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ABSTRACT

In the present research, 
,~~ hybrid stress multilayer warping quadri-

lateral element with a traction-free edge (TFQE), based on the Principle
of Modified Complementary Energy , has been developed for efficient finite
element modeling and analysis at and near free edges. The assumed stress
distributions in the element were selected so as to satisfy the basic
equations of equilibrium; sufficient detail was implemented throughout
each layer of each element to model the steep boundary layer stress
gradients , including the important interlaminar stresses. The interlayer
stress continuity and traction-free conditions at the free edge are
satisfied exactly;., the resulting stress distribution was examined for
consistency as required by 3-dimensional stress functions. The stress
assumption includes no singularity. The traction—free edge is allowed to
warp freely.

The interior of the laminate, away from the free edge , is modeled by
laminated-plate elements (MLP3IC) which are based on lamination theory .
These elements include transverse shear deformation and are compatible with
the TFQE. Thus , numerical results for general free—edge multilayer plate
problems are obtained with efficient lamination-theory element modeling of
most of the structure, while TFQE elements provide additional warping
degrees of freedom at and near the free edges where the warping effect
is important. This method of analysis has been developed for both static
(mechanical and thermal loading) and transient response analyses.

Several examples, for which other numerical solutions exist, have
been solved by using the TFQE and/or the TFQE in combination with 14LP31(
elements. The results compare well, but a significant reduction in the
number of unknowns of the equations has been achieved in the present
PFQE solution.

Finally , some numerical methods for solving static and transient
response equations have been reviewed.
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SECTION 1

INT~~ DUCTION

1.1 Brief State of the Art Review on Traction—Free Edge Effects Studies
Composite materials are often used in missile and aircraft structures.

They have high strength-to-weight ratios and , hence , from that viewpoint

form good structural materials for plate and shell structures . However,
at traction-free edges, laminates tend to develop large intarfacial

stresses. Further, methods for predicting these stresses accurately and

efficiently are not yet available . A basic understanding of and a means
of predicting these stresses accurately is sought in the present study .

F Two classical problems as described in the following can be used to study

this interlaminar stress behavior.

The first is a 4—ply ( 0/90) coupon under tension (Fig . 1) with

uniform strain C imposed over each end face . The solution ( l J * , neglect-

ing loaded—end effects, is independent of x. The stresses are uniform in

the interior of the laminate, but rapid changes occur in a “boundary

• layer” near the free edge as shown in Fig. 2. As indicated schematically
in Fig. 3 for individual plies, the interfacial normal stress 0 balances
the moment arising from 0

y 
on the 0° ply and O

r,, 
on the 90° ply. Thus , a

normal stress a induces the interlaininar Ca) normal stress a and (b)

shear stress t~,1 at and near the free edge . The a5 stress at such

locations is usually the more critical.

The second classical problem is an angle—ply coupon (+45)~ in tension
as depicted also in Fig. 1. Similarly, neglecting loaded-end effects, the
solution is independent of x. The stresses [1,21 are again uniform in F

the interior of the laminate and rapid changes occur in a “boundary layer”
near the free edge as shown in Fig. 4. For equilibrium at the +45/-45
interface (Fig. 5) ,  the interlaminar shear ~~tress T balances I . Here ,xi xy
an inplane shear stress T

X? 
induces a significant T

~~, 
at and near the free

*Numbers in square brackets ( 3 denote references which appear in the
reference list at the end of the text .
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edge . In both coupons even though C~ is cons tant, the normal stress
varies rapidly along y near the free edge as shown in Refs . 1 and 2.

In a general laminate problem, importantly large inpiane stresses
and occur near the free edge, and these induce all three interlaminar
stresses ci , , and T • When ~ is tension, these stresses can cause

2 y* xZ S

ply delamination (3,4]. These two classical problems have bean solved by

many researchers using a variety of approximate methods. The methods

employed, the results obtained, and the attributes and limitations of

those approaches are reviewed in the following paragraphs .

The earliest solution was by Puppo and Evensen (2]. They solved the

(+45)~ coupon problem by modeling the bond between the plies of a laminate

with a finite isotropic layer to produce equivalent interlaminate shear

stiffness and, thus, averaged the shear stresses and at ply inter-

faces. In this method it is assumed that OEO and, hence, this approach

cannot be used to solve the (0/90) laminate problem.

Finite-difference solutions of both problems were obtained by Pipes

and Pagano (1,5]. The solutions for the stresses 0 and t at the
a xz

F free edge are not shown even for very fine meshes and, hence, these
stresses may be singular at this location. The number of unknowns from

the resulting equations was about 1200 .

Bogy (6] using Airy’s stress function analyzed edge--bonded, dissimilar

isotropic wedges and found singular stress distributions of type r~~ at

the interface, where r is the “radial distance” measured from tbe i,~ter-
section of the interface with the free edge. The power term ~ in his
solution depends on the ratios of the two shear moduli and of the two

Poisson ratios. This analysis has not yet been extended to orthotropic

materials. However, in real laminates, the material is two—phase (resin

and fiber) , and a gradual transition of material properties occurs between

plies. Thus, a two-phase modeling of composites may avoid such singulari-

ties as found in the problem analysed in Ref. 6.

Rybicki (7) analyzed both problems with three-dimensional finite

elements based on the Principle of Complementary Energy . Rybicki modeled

only the upper syssnetrical half of the laminate and consequently had to

solve for 492 unknowns. The interlaatnar stresses at the loaded -ends

2



are of interest and a detailed discussion of these can be found in
Ref. 4.

Wang and Croasman (8] modeled typical cross sections of both coupons
with constant—strain triangular finite elements . To achieve an accurate
prediction of the rapidly-varying boundary layer stresses , they used 16
elements through the thickness of each ply near the free edge , with a
total of 196 elements for each ply. Thus, even simple cases require a
large number of elements in this procedure .

Pagano (9) applied a higher order plate theory derived by Whitney and
Sun (10] to determine the interlaininar normal stress a

~ 
in the (0/90)

laminate depicted in Fig. 1. The solution correlates quite well with the
finite-difference results of Pipes and Pagano [5] . However , the theory
violates interlaminar stress continuity ; hence , the solution for I isym
poor.

By using Reissner ’s Principle [113 , Pagano (12) developed an approxi—
mate theory for laminated composites. By making assumptions of z varia-

tions of the stresses, the equations are reduced to two independent

variables : x and y. The unknowns are seven generalized displacements
and six stresses for each ply or layer; each ply can be modeled by several
sublayers for improved accuracy. Using this theory, he solved both of the

aforementioned classical examples [13]. However, the resulting equations
are coupled partial differential equations, and the boundary conditions
involve a combination of various derivatives. Hence , such equations would
be difficult to solve for general problems.

Tang (14,153 applied boundary layer theory to solve the classical
examples cited in Fig. 1. Based on the proof by Friedrichs and Dressler
(16] for isotropic plates, Tang constrains the six stresses and three
displacements as either odd or even in each ply. This procedure in each
ply is questionable because the solution does not satisfy interply stress

continuity. Tang also applied this approach to the analysis of a circular
cutout in an infinite plate in tension (17], and a simply-supported
uniformly-loaded plate [18].

3
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Wang (19) using 3—D finite elemants based on a modified form of
Reissne r ’s Principle (11], analyzed both coupon problems. His solutions
compare well with the finite—difference solution of Pipes ( 1). In this
method the traction conditions at the free edge and at layer interfaces
are satisfied exactly either analytically or by the use of Lagrange multi-
pliers similar to the method developed by Mau and WitTher [203 .

Rybicki and Schxnueser (2 1] analyzed a tension-loaded laminated plate
with a circular hole. Taking advantage of aynlnetry , they modeled an
eighth of the plate with 36 three-dimensional finite elements . This mesh
is rather crude, but the analysis provides a qualitative picture of the

solution.

In classical elastici ty , the solution of a tension-loaded isotropic
plate with a circular hole is based on the theory of generalized plane
stress. However, when the thickness of the plate is of the same order as
the diameter of the hole , the deviation from the plane-stress assumption
is significant. A]blas (22] analyzed the three—dimensional stresses for
this problem by using complex eigenfun ctions (23] but the analysis is

- . restricted to special problems. Green (24) also analyzed the same problem
by assuming the stresses to be expressible by series in sines and cosines.

The above methods have been applied to solve a very restricted class
of problems . The numerical procedures (finite difference and finite
element) are limited by computer storage ; also , the approximate methods
employed are difficult to apply to more general problems which may involve
complex edge geometries and loading . Thus , an efficient solution proce-
dure is needed for the stress analysis of laminates to provide accurate
predictions of important intarlaininar stresses which can occur at and near
free edges.

1.2 Outline of the Present Investigation

In the present research, a multilayer warping element with a traction-
free edge as depicted in Fig. 6 is developed for finite element modeling

at free surfaces; this element is termed the traction-free quadrilateral
element (TFQE). The element is based on the Principle of Modified
Complementary Energy (25)~ in which the requirea.nts of interelement

alternate formulation is also possible by modifying certain surface
integrals in the Principle of Modified Complementary Energy ; see page 7
of Mf . 48 for details . 4
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traction compatibility and applied boundary traction compatibility are

relaxed~ that is , these interelement conditions are satisfied in an

integral sense by the use of Lagrange multipliers. The free boundary is

finely modeled with inplane degrees of freedom , u and v , at each ply face ,

and a quadratic distributi n of w through the thickness. This is necessary

because the large interlaminar stresses produce cross—sectional warping .

However , these stresses decay rapidly (in a boundary-layer length which is
of the order of a laminate thickness, 2H); hence , away from the free edge,
the boundary ii simply modeled by five degrees of freedom at each of its

two nodal stations.
The stresae8 are assumed in terms of polynomials with unknown

coefficients (~ ) and they satisfy the equations of 
equilibrium exactly.

Since rapid gradients occur normal to the free edge, the stress along y
is interpolated with polynomials up to degree four. Tangentially along

the free edge (x-axis), the stresses are assumed to vary linearly. The

stress assumption includes no singularities.
- 

Previous investigations by Mau and Wither 1203 and Wang (93 included

interlayer traction continuity in the formulation by the use of Lagrange

• multipliers. However, this leads to several additional matrix manipula-

tions and also doubles the storage needed for the element. Hence , the

interlayer traction continuity is enforced analytically in the present

study.

To analyze a laminate in regions not including the free edge, its

interior is modeled by laminated plate elements (261 which are based on

lamination theory . These elements (named MLP3K) include transverse shear

deformation and are compatible with the free edge element (TFQE) . Thus ,

numerical results for general free—edge problems are obtained with an

efficient lamination-theory element modeling of most of the structure,

while TPQE elements provide additional warping degrees-of-freedom at and

near the free edges where the warping effect is important. The analysis

is developed for both static and dynamic problems under mechanical and

thermal loading . The traction-free quadrilateral element (TFQE ) is tested

for accuracy and efficiency by comparing predictions obtained from its use

with existing numerical solutions.

J
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SECTION 2

OBSERVATIONS ON ASSUMED-DISPLACEMENT ELEMENTS

2.1 Objectives

Since the ass~~~ d-disp1acement element is widely used for structural
analysis , the consequences of its use in terms of efficiency and accura cy
are examined in th . following for the analysis of “ free-edge ” problems .
A representativ, eight-node quadrilateral assumed-displacement element
(QUAD8) , is used to analyse the (0/90)~ coupon in tension as depicted in
Fig. 1. The QUAD8 element (271 is based on a biquadratic assumed displace-
ment field (i.e.. stresses are fully bilinear with some quadratic terms);
a schematic of the QUADS element with its node points is given in Fig . la
Three uniform meshes are used to analyze this coupon problea* (a) 176

elements with 1178 degrees of freedom , (b) 224 elements with 1490 degrees
of freedom ( see P ig. 7b) , and (c) 320 elements with 2114 degrees of

freedom. The nt idplane inter laminar normal stress solution (o~ vs. yfb
at z—0) were found to be converged for all three meshes. However,

serious stress violations occur in all three meshes at the 0/90 interface
near the fr.e edge . The inaccuracies in the solution will be illus trated

- 

I by plots for Mesh (b) to show the limi tations of QUAD8 which is represen-
tative of assumed-displacement elements .

2 • 2 Formulation Review

The general stress—strain relation for ortho tropic material is (283

C,~ C,a C, 0 0 C,~
c~, C11 C11 0 0 C11~
C~ C ,, c1, 0 0 C~
0 0 0 C,, ç o  4
0 0 0 Cg~ C11r 0 1*z

C~ C~, C~3 0 0 )‘7 (2 .1)

6
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where the material properties ~~~ are defined with respect to the element
x ,y.s axes -- not the material axes of a ply . However, because of the
particular orientations of the plies (Fig. 1), the coupling shear stiffness
coefficients vanish in every layer; that is

C4, ~ C~~ C .  0 (2 .2 )

In such cases , the displacement field can be assumed to be ( 9 3 :

U.. ~ X ( 2.3a)

~ U ().,2) (2.3b)

tp .  (2.3c)

From Eqs . 2.1, 2.2 , and 2.3:

YAI •~~~x1 r1, t,,, . 0 (2 .4)

The stress-strain relation s for the bidirectional laminate then reduce to:

C,, C,,~ C,~ 0

= 

C,1 C~ ~ 0

c~4 c1, C~ 0

2~IL 0 0 0 4, ~~~~ (2.5)

The potential energy function~1 fnr a bidirectional laminate with

zero body forces and applied tractions is

( 2.6)

where the strain energy U per unit volume is 1283 :

7 
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U ~~~~~~~ E
*

1
J e (

~ ~ 
Lx £3

a (2 .7)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(~J 4

The first term in Eq. 2 • 7 is a constant whose contribution vanis hes
when one evaluates the variati on of i t .  The second and th ird terms
generate the element nodal forces and the stiffness matrix , resp ectively.
The displacement field in each element is quadratic and is written as

~ /‘ 
( z )  ~ (2.8a )

A 
~~ (

~
, z )  ~~~~~~

. (2.8b)

(t :i ;)
where

_ biquadratic shape functions* (29 , 303

v~ ,w~ — nodal-displacemen t degrees of freedom in

directions y and z , resp ectively

The element stiffness and force matrices are obtained by substituting
Eqs . 2 • 8 into Eq. 2.7 and integ rating over the element volume , as
discussed in Ref. 27.

2.3 Finite Element Mesh and Material Properties

Since the problem is symeetric about both the y and z axes (Fig. 1),
only a quadrant of the cross section is analyzed. Three uniform meshes
were investigated to assess convergence:

(a) 8 elements along z and 22 elements along y (total of 176
elements with 1178 degrees of freedom) .

a
These very lengthy expressions are not included in this report but may
be found in Refs . 29 and 30.

8
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(b) 8 elements along z and 28 elements along y (total of 224

elements with 1490 degrees of f reedom) .

(c) 8 elements along a and 40 elements along y (total of 320

elements with 2114 degrees of freedom) .

The differences in the solutions obtained from the three meshes were
negligible. Hence, only the results from Mesh (b) will be pre sented . This

mesh and the nomenclature are shown in Fig. 7.

Of particular interest in the present case are elements 212, 213,

220 , and 221 which contain the 0/90 interface near the free edge . Stress

plots of this region will be presented subsequently with respect to the

auxiliary coordinate ~~, which measures inward from the f ree edge .

Th. ply properties represent a typical high strength graphite/epoxy

material:

EL ~~~ ~ ~bt i  Er 2(  a i  *

6
LT ~~ ~ . 0• tr

2~ .~)) : 1 1  r Ø-J I
L7 LZ. Tx I:

where L, T and a refer, respectively, to the longitudinal, transverse ,

and thickness directions of the ply .

2.4 Results

A plot of a5 at the symeetry plane z—0 is shown in Fig. 8. The

solution agrees well with the finite element analysis of Wang and
Crossaan (8], and an analysis based on Reissner ’s Principle by Pa gano (i ll .
However, such a limited comparison can lead to an erroneous conclusion

about the accuracy of the finite element solution at other locations in
the laminate .

In formulating displacement elements , traction continuity conditions
at interel ement boundaries and traction-free conditions at free edges

9
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are not enforced. Hence, when the displacement-field gradients in the

structure exceed the gradient capability of the finite-element interpola-
tion polynomials, serious local violations of these conditions can occur .
In the present solution, inaccuracies exist at the 0/90 interface (z=h )
near the free edge (y-b or y’.O) .

At z—h , the normal stress 0 is plotted along the interface in Fig. 9.
Serious errors in stress continuity occur at and near the free edge .
Similarly , the shear stress is plotted at z—h in Fig. 10. Here, not

only is stress continuity violated, but also the traction-free condition,
at y—O, is violated in element 221. In Fig. 11, the in—plane normal

stress 0y is plotted at various locations through the laminate thickness .

Serious errors in the traction-free condition 0y~ O at y—0, occur at the
0/90 interface (note , however , that a~, does not have to be continuous
across the 0/90 interface) . Finally, Fig. 12 shows plots of a

~ 
through

the laminate thickness at the free edge. Each line segment between two
dots represents the stress distribution in one element. The curve is

discontinuous because of interelement traction continuity violations .
It is apparent that serious traction violations occur in the vicinity

of the 0/90 interface. Uncritical acceptance of these results would
- - indicate that a “maximum” in a occurs at z 0.75h. Similar distributionsz

were obtained for Meshes (a) and (c) .

2.5 Discussion and Conclusions 
-

A (0/90) coupon in tension is analyzed using eight-node quadrilateral

assumed-displacement elements . The distribution of vs • y at the mid-
plane agrees well with existing numerical solutions. However, such a
limited comparison can lead to an erroneous conclusion about the accuracy
of the whole finite element solution because serious violations of trac-
tion continuity and traction-free conditions exist. These errors occur
when the displacement-field gradients in the structure exceed the ability
of the element interpolation polynomials to follow the solution. One
possible remedy is to ref ine the mesh locally , but this increases the
unknowns in the model, which is already quite large (1490 degrees—of-
freedom). Also, complex mesh generation is required.

10

- 5 - - 
- - - - --_- - - -

~~~~~~~~~~~~ 

~~~~~ 5~~~~~~~~~~~ 5~~~~~~5~~~~



—5— -5-,

In their analysis, Wang and Crossman [8] predicted that occurs
at s—h, y—b . In the present assumed-displacement analysis, o~~~~~ occurs
at z—0.75h, y—b. However, such maxima cannot be taken seriously in view
of the many deficiencies present in the assumed-displacement finite-
element models and solution . -

Thus , it appears that assumed displacement elements are quite
inefficient for analyzing the behavior at and near free edges in compo-
sites. The critical stress gradients cannot be accomeodated in an element
without increasing its degrees of freedom rather drastically; however, in

- 
S hybrid stress elements, this can be done efficiently. Hence, a hybrid

stress , multilayer, warping plate element with a traction-free edge has
been developed for composite plates and shells in the present study and
is described next in Sections 3 and 4.

— — 
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SECTION 3

REVIEW OF THE HYBRID STRESS FINITE ELEMEW~ FO}~4UIA?IOt1

In order to satisfy explicitly and exactly the zero~-’ress conditions

on the free edge of a multilayer structure4, it is useful for constructing

a finite element analysis to use a variational principle in which condi-

tions on this free-edge bounding surface are accounted for explicitly

and separately from the (many) other terms which involve (a) the ( interior )

volume of the element , (b) element bounding surfaces having non-prescribed

tractions , and (c) element boundary surfaces with non-zero prescribed

tractions . A variational principle which provides these features and

attributes is the Principle of Modified Complementary Energy (253 ; this

principle is employed as described in Subsection 3.1 for the finite element
analysis of mechanically- and thermally-loaded structures under static

conditions.

To include inertial forces in a dynamic analysis, it is convenient

to employ the modified Hellinger—Reissner Variational Principle [20,31,32]

as described in Subsection 3.2.

For clarity , only the general formulation of the finite element

equations is outlined in Subsections 3.1 and 3.2. The implementation

details in terms of specific finite element descriptions are given in

Section 4.

3.1 Static Analysis

3.1.1 Formulation

The Principle of Modified Complementary Energy (25] for a continuum

which is to be modeled by a total of N finite elements may be written as
N

~r)i~c L_ — — — —. — ,
~

s , 
~~

~ -ff ~IsJ

(3. 1)

is essential if accurate stresses at and near the free edge of a
multilayer laminate are to be predicted from a finite-element analysis.

12 
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where

C) — stress tensor

c — thermal strain (from known temperature change ~T

t and qiven thermal expansion coefficient data)
S — material elasticity matrix relating strains to

stresses

‘P — boundary traction

u~ — displacement vector (note that this quantity

appears in Eq. 3. 1 only along the boundary (not

in the interior of the element) ; the star super—

script means that the displacement is on the

boundary’~r
1’ — prescribed boundary traction

V — volume of the nth elementn

— entire boundary surface of the nth element

S
0 

— portion of on which tractions (non-ze ro

or zero ) are prescribed

n — the nth element of the N elements which are

used to model the structural continuum

The governing finite element equations are obtained from the condition
that the variation of ii shall be zeros 6it —0 .mc mc

The stresses a appearing in Eq. 3.1 pertain to the interior volume
V of th. element n and can be writt.n as

a- ~~P ,6~~~~f l - S ’~ 
(3 .2 )

- E1~ + F
~4

+Later , displacements in the interior are denoted by u.

13
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where the ~ are unknown parameters and the P are appropri ate spatial
interpolation functions such that PB satisfies equilibrium and traction
conditions (see Subsection 4.2 for details) ; both and are

functions of the unknown thermal Loading . The term ~~~~ is the equivalent
thermal stress obtained from the knc~vn c (x ,y,z,t) and the stress-strain

relations . The term is chosen such that equilibrium and traction con-
ditions are satisfied for any given 

~~~~ 
(see Subsection 4.3 for details).~

The boundary tractions T pertain only to the boundary (including

S0 
) -- not to the interior volume V -- and may be expressed from Eq. 3.2

n
and the direction cosines of the boundary as:

T. R S R , ~ 
(3.3

where 
~ ‘ ~~ ‘ 

and are the interpolation functions given by Eq. 3.2 but

evaluated at the traction-boundary locations . If there are no tempera-

ture changes, both and are zero .

The boundary displacements u~ may be interpolated in terms of the

nodal generalized-displacement degrees—of—freedom q (see Subsection 4 • 5.2)

as: . 

U~~L5 !— (3.4 )

where , as indicated Fig . 6 , the q have been selected at convenient

locations on the boundary of the element .

Substituting Eqs . 3.2 , 3.3, and 3.4 into Eq. 3.1 , one obtains

(constants are omitted since they vanish under variation) :

N

II. ,,

4-t
T
~~t ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

that one could assume the stresses (Eq . 3.2) as C — P~ . However ,
this approa ch could be restri ctive if one has a more ~ene~~ 1 prescribed

distribution than that assume d in PB (see p. 43 of Ref. 20) .

14
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where

aJPTi~ dv (3 .6)

~ 11J!~i ds (3 7)

(3.8)
4,,’ .

(3 9)

~v,l.

ds (3.10)

• Q iij L Td4 - applied mechanical generalized tract ion
- 

loads (3. 11)

Since the ~ 
are independent for each element , they can be eliminated in

terms of the q by setting

IT = ~ ,r,~~ g,e ~ ~ ~~~ S’~i = o (3.12a )

In particular, -a- ° — 0 for each element separately ; this yields :

2’ ~~~~ 
(3.12b)

15
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Substituting Eq. 3.l2b into Eq. 3.5 , one obtains —

— I 
(3 . 13)

— where

IA. :G, /1 ~‘ element stiffness matrix , 
(3.14)

(3.15)

— gener alized ther mal loads vector for the element

and is given by Eq. 3.11.
Next , let the element prope rty descriptions which are now expressed

in ter ms of local element coord inates x ,y ,z  and local element generalized
displacements q be descri bed with resp ect to the same global reference
coordi na tes X ,Y , Z and global element generalized displacement q* by the
usual geometri c transforma tion mat rix ‘P (303 :

~,.r q/
(3. 16)

Accordi ngly, Eq. 3.13 becomes

~f f ~~~~~~~~ •~~~~~~r~~~ • r
,] 

(3.17)

where

• a — element global stiffness matri x

r 
(3.17a)— global thermal loads vector

16
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Q,4— global mechanical loads vector (3.l7a
~~. 

1~ concluded)

Finally , let the structure be represented by N finite elements which are
joined to each other compatibly along interelement boundaries. In

particular, let that compatibility be expressed in terms of compatibility

of the generalized global nodal displacements q* defined at the inter-

element boundaries. Then setting &fl m
SO for the complete assembled

discretized structure gives

(3.18)

Since the tSq* are independent and arbitrary, one obtains the following

algebraic equations of static equilibrium for the complete assembled

die cretized structure:

(3.19) —— — —~~ — T -

where the assembled stiffness K and force matrices FM and 
~T are found

from assembling the Eq. 3.l7a element global contributions:

S .
A
—I
’

k
(3. 19a)

if.‘5- iQ. -— T I~ 7~ 
- - — —rL ‘ N



3.1.2 Solution Procedure

f For static analysis the algebraic equilibrium equations of the
structure (Eq . 3.19) can be written as

- (3.20)

where

—M —T

The stiffness matrix K is banded , syimnetric, and positive—definite. The

“direct” method for solving Eq. 3.20 is to compute K 1 and to obtain the
displacements 

~~ 
as

I. ~~‘

V — —

However , this procedure is inefficient and hazardous numerically because
K 1 is fully populated and , therefore, requires more storage than K.

An alternate scheme is the triple-factorization and sequential
solution method (see pp. 162-167 of Ref. 33 or pp. 3—11 through 3—17 of 

-

Ref. 34) . This method is also called the Gauss-Doolittle decomposition
with sequential solution (see pp. 21-22 of Ref. 29) and consists of two
major steps :

1. The global stiffness matri x is factored into a triple produc t
(triple factorization or Gauss-Doolittle decomposition).

2 • The displacements are solved for sequentially, in three sub—
steps .

The global stiffness matrix K is factored into the form:

7 (3.22)
k = L Z ’ L

where L is a lower triangular matrix+ with zeros in it’s upper triangular
portion and unity on the diagonal , and D is a pure diagonal matrix.

~Note that L in Eq. 3.22 is totally different from the interpolation
function L defined in Eq. 3.4.

18
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By direct substitution and comparison , one can show readily that

i~~~k -Z L~ ~
~~ 

*.fr P (3.22a )

and

L. • rk .  -f ’ L. . L
ebi ‘

~~ 
‘P ~‘P ‘ (3.22b )

Note that for rn—i, there are no stme~at ion terms . By the use of Eq. 3.22 ,

Eq. 3.20 may be rewritten as

L 2 I _ V i P  (3.23)

Next, let

L R ~~~F
~ — (3 .24 )

where
- A ~3i.~3’ (3.24a)

Solving Eq. 3.24 for R, one obtains by forward solution 
-

‘~ —..L ~ — Y  L d~ J 

(3 .25)
~ p fr

Next , rewrite Eq. 3.24a as

(3.26)

Where

(3.26 a)

19 
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Solving Eq. 3.26 , one finds

“~4~ 1 (3.27)
!-~~~!~ s

~JFinally, Eq. 3.26a is solved by backward substitution to obtain:

~~ - I k ~~I f~ x~~s ~~ 1,]

(3.28)
~~~~~~~~~~~~~~~~~ . . .

~~
_ L

~~~
j /A.J

L 

Sequentially, this “computing and storing ” process involves (a) solvingEq. 3.24 for R and rep lacing F by R , (b) solving Eq. 3.26 for P and
replac ing R by P , and (c) solving Eq. 3.26a for q~ and rep lacing P by q*.Thus , by this procedure, q* is obtained without computing K 1. Themethod does not requi re any additi onal space , but less computing time isrequired when compared with the “direct” method . For more details on
factoring and sequential solving , see Ref. 34.

3.2 Dynamic Analysis

3.2.1 Formulation

For dynamic analy sis an appropr iate hybrid functi onal may be obtainedfrom the Modified Hellinger-Reiss~~~ Princip le (20 ,31 ,32 1; the associatedfunctional in tensor notation with (initial) known thermal strainincluded is

20
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-f 7 LL~~d5J dt

where the structure ( continuum) has a known configuration at times t1 and
and

— — stress tensor

u~ element interior displacement field
- 

u~ element boundary displacement field

SijkR = material elastic properties matrix

p — - material mass per unit volume

Tj - boundary traction

— prescribed boundary traction

V1~ — volume of the nth element

3V boundary surface of the nth element

S0 — portion of av on which tractions are prescribed

— known thermal (initial) strain

t - time

- 
Let the boundary tx-actions , Ti. be expressed in terms of the stresses

a .~~)
(3.30)

21
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where is the direction cosine on the element’s boundary. Then using
the Divergence Theorem, one of the integrals in Eq. 3.29 can be written
as

~~~~~~~~~~~~~~~~~~~~~~~~ 
-

(3 .3 1)

~~

Substituting this into Eq. 3.29 , one obtains a modified principle 7IW,D:

‘
~~~ ~J2~ ~~~ 

k ~~~~~ a~~ a~~, 
~~~ 

- ø~~

_
~~P~~~ ] d v .~fT~ ~~ 0(5

(3.32)

Also, let the stress field within each element satisfy the homogeneous
portion of the equilibrium equations; that is, -

(3 .33)
dl c~

Then Eq. 3.32 can be writte n in matri x form as

I~LT~ 
cr-PS ~~

. -
~~~~~ 3d

(3.34)

#f ~ u~ ds~ f 3
t
~~ds cit

where denote s the dynamic modified complementary energy princi ple .
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Note that Eq. 3.34 is the ~ynarnic equivalent of Eq. 3.1 for 

~
1rnc The

kinetic energy term yields the mass matrix. Note that the velocity field
is obtained from the interior displacement field which need not be
compatible with the boundary displacements as can be seen from an inspec-
tion of Eq. 3.29 Or Eq. 3.34. The interior displacement and velocity
field may be written as (see Subsection 4.5.3 for details) :

~ (3.35)

where

q — nodal degrees-of-freedom

N — spatial interpolation functions

Substituting the velocity matrix into the kinetic energy expression , the
mass matrix is given by

2~ d v ( 3.36) 
- 

-

This procedure is not fully consistent with the hybrid-stress model
because the hybrid stress model requires that the stresses satisfy the
equilibrium equations; however, for dynamic analysis, the equations - contain
an inhoinogeneous part caused by the inertia terms. Since only the
homogeneous part (Eq. 3.33) has been satisfied in the present formulation,
the mass matrix has been termed a “hybrid semi-rational” mass matrix;
similar mass matrices have been employed in Refa. 20 and 35 with encourag-
ing success. 

-

Utilizing Eq. 3.35 and the geometric transformation matrix T~ given
by Eq. 3.16 to relate local to global element generalized nodal displace-
ments q* and velocities 4* as well, one can show that the element mass
matrix rn~ referred to the element’s nodal global generalized velocities

S i  
_
~~~~is 

1~- - M z T  ~M l  (3 37)— ,,. — —) ‘
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Finally, imposing global generalized nodal displacement compatibility ,

setting 6it~~~—O , integrating by parts with respect to time, and imposing

the requirements that 6q* at t1 and t2 must be zero , one obtains the
following ordinary differential equations of dynamic equilibri um:

(3. 38)
— — —IW — T

where analogou sly the assembled mass matrix is

( 3.38a)

and initial conditions (at t—0 or subscript “o”) q~ and are given .

3.2.2 Solution Procedure

For present purposes , it is assumed that only (1) prescribed -

transient externally-applied mechanical loads are applied and/or (2) tran-

sient temperature distributions throughout the volume of the structure

are prescribed . Fur the r , the temperature levels are assumed to be such

that they do not affect the mechanical properties of the material. Also ,

there is no thermo—mechanical coupling in the sense that structural

dynami c response does not influence the temperature distribution whereas

the independently-dete rmi ned transient temperatures can influence the

stresses and transient mechanical response of the structure.

If transient externally-applied mechanical loads and/or thermal loads

were applied to the system, one could predict the resulting transient re-

sponse by one of two well-known methods . The first involves the use of normal

modes which permits one to replace Eq. 3.38 by a set of single degree—of-

freedom (DOF ) equations of motion each of which can be solved exactly in

closed form for given transient generalized modal loading by the use of -$
the Duharnel superposition integral. However , one must first find the
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natural mode shapes and frequencies embedded in the homogeneous version
of Eq. 3.38 in order to obtain the normal-mode equations of motion. This

was the procedure which was adopted, for example, in Ref. 35; hence, its 4
description is not repeated here.

The second method involves the direct timewise numerical integration

of Eq. 3.38 by the use of an appropriate finite-difference time operator.

This is a more direct method; however , only approximate solutions at a

discrete sequence of time instants can be obtained. In practice, the H

solution errors (a) always consist of phase distortion and (b) may also

arise from false damping (positive or negative) introduced by the finite-

difference time operator itself. Further, the time increment size t~t may

be limited by roundof f-error instability properties of the operator;

operators of the explicit type always exhibit this behavior, and the ~t

size must be restricted accordingly . On the other hand timewise finite

difference operators of the implicit type do not exhibit roundoff error

instability and hence this effect does not limit the size of the allowable

Cit. However, all of these implicit (and explicit) operators produce

predictions with phase distortion which becomes increasingly severe as

one utilizes a larger and larger t~t. Also, many but not all of these

implicit operators exhibit false damping.

The properties of many timewise finite-difference operators have

been reviewed, for example, in Refs. 36-38 for application to linear

transient response problems such as represented by Eq. 3.38. For

application to linear mutli—DOF systems, let it suffice to note that the

Newmark B-method [391 with 8—1/4 is generally regarded as being the most

useful of the available implicit operators since it (a) is unconditionally
stable , (b) exhibits no false damping, and (c) displays less phase distor-

tion than the other available implicit methods. Since this method was

used to obtain the transient response predictions shown in Subsection 5.2,

its essentials are reviewed briefly in the following.

For this purpose consider equations of motion of the following form

for linear transient response analysis:

~~ ~~~~~ -! (3.39)
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which is similar to Eq. 3.38. Let this equation be solved in small equal
increments At(~d) of time by the use of the Newmark-8 finite-difference

F time operator expressed by (39] :

• . ..

~~~~~~~

. €jj ~~, #f ~, j  d where d — At (3.40a)

and

(3.40b )

where subscripts n and n+l denote quantities at time instants t~ and t~41;
also ( ) means differentiation with respect to time . At time t—0 , let
it be assumed that and are given. Note that one can also write
expressions similar to Eqs. 3.40a and 3.40b to represent %, 

~~
, %~~~

,
and % l  By so doing, then applying the results to write Eq. 3.39 at
time instants t~~1, t , and t~_ 1, and carrying out eliminations , the
following “explicit” recurrence equation [40 1 can be obtained:

~~~~~ q~ - 

(3.41)

~~~~~~~~

‘

~~~~~
÷ (~ -~)

~ ~~~
A starting procedure may be obtained in a similar fashion [40] and reads

8~/ ~~~~~~~ ~/ ~0C
t

F -
~~ 

(3.42)
— — — — — — 0 .—g — —

4Note that ~ in Eq. 3. 40b is totally different from the stress parameters
8 defined in Eq. 3.2. -
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where

— N + B d 2K •

— M— (-~ 
- B)d2K — d2

I(~ - - 8)

I — unit matrix

— known generalized displacements at t—0

— known generalized velocities at t’.O

With now known from Eq. 3.42, one can write Eq. 3.41 at n—i to obtain:

~~~~~~~~~~~~~~~~~~~~~~~ ) 
~~
,

-(
~~~~~~~ )5 ?~ 

(3 . 4 3 )

One can then solve Eq. 3.43 for q2 since all else is known . Next , proceed

similarly to compute q3, q4, ... for as many time steps as desired.

To choose an appropriate time increment size At(Ed) a rough rule-of-

thumb is to provide about 20 time increments for the period of the highest

significantly responding mode of the sysf rn , if known. An alternate

selection might be to choose At to be e*/w where w is the highestmax max
frequency of the mathematical model of the structure (homogeneous form
of Eq. 3.39) and c~ is some number like 200 to 400 perhaps -- presuming
that th. principal structural response involves roughly the lowest 20 to

50 percent of the normal modes of the structure.

Observe that Eq. 3.43 at any time instant “n” can be written in the

form:

— — ii. ‘~~~~‘ ( 3 . 4 4 )
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Also, note that Eq. 3.44 is of the same form as Eq. 3.29 in Subsection
3.1.2. Thus , instead of computing B* 1, the triple—factorization and
sequential solution method is used to obtain q~ . If the matrix B~ does
not change with time, the factored form at the first time step can be
used at all of the remaining steps.
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SECTION 4

FORMULATION FOR THE HYBRID STRESS MULTILAYER QUADRILATERAL

FINITE ELEMENT WITH ONE TRACTION-FREE EDGE

4.1 General Considerations

As indicated in the discussion in Sections 1 and 2, it is desirable
from the standpoints of stress—prediction accuracy and efficiency to base
a finite element analysis of multilayer laminated thin plates upon a Modi-
fied Principle of Complementary Energy (MPcE). Finite elements based upon
that variational principle are called hybrid-stress elements and have beQn

shown to be superior for predicting displacements in static loading prob-
lems to either assumed-displacement or assumed—stress f inite elements [41].

For finite-element structural analysis involving static mechanical
and/or thermal loading, one can utilize the t.fl~CE fun ction 1mc given by
Eq. 3.1. An examination of this equation reveals that for a finite-
element analysis, one needs to devise: (a) an appropriate assumed-stress

distribution throughout the volume of each element and (b) an appropriate
assumed displacement f ield o~~y along the side boundaries A to B , B to D ,
D to E, and E to A as identif ied, for example, in Fig. 6. This approach

has been employed successfully for the analysis of multilayer laminated
plates and has been reported, for example, in Refs. 20, 26, and 35. Those

previous studies, however, did not include a detailed examination of the

often-very-critical stresses which occur at and near the free edge of a

multilayer laminated composite structure. Hence, the present study

focusses chiefly upon an accurate finite—element prediction of these
“critical stresses” at and near a traction—free edge . Accordingly , a
special finite element called the traction—free edge auadrilateral element

(TFQE) as depicted in Fig. 6 has been constructed to provide “fine detail

information” at and near its traction-free edge AB, and to be compatible
at its opposite edge DE with the MLP3K multilayer element of Ref. 26.
The hope is that the use of the TFQE element only along the traction-free
edge(s) together with another element such as I4LP3K (or other similar
elements) will provide the analyst with accurate and efficient predictions
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of stresses at all critical locations in the multi]ayer laminated plate

structure. Accordingly, for the TFQE depicted in Fig. 6, appropriate

assumed-stress distributions have been devised as described next in 
- -

Subsection 4.2. A description of the prescribed or initial (thermal)

stresses is given in Subsection 4.3, while interlayer continuity condi-

tions and the free-surface conditions on the two surfaces at z—+H are
discussed in Subsection 4.4. The selected assumed-displacement distribu-

tions along the edge boundaries of the TPQE are discussed in Subsection

4.5.2.

For dynamic response problems, the presence of inertia forces
throughout the volume of the material must be taken into account . An
approximate means for achieving this in a variationally-based finite

element analysis of the present (hybrid) type has been indicated in

Subsection 3.2 where a modification of the Hellinger-Reissner Variational

Principle resulted in a functional, Eq. 3.34, with inertia effects

- - included. As Eq. 3.34 shows, for a finite element analysis one must

construct an assumed displacement field throughout the volume of the

element (see Subsection 4.5.3) as well as independently along the edges

of the element as in the static formulation given by Eq. 3.1; also, an
assumed stress distribution throughout the volume of the element is

required and remains the same for the dynamic as in the static case.

Finally , Subsection 4.6 is devoted to describing the resu~ting
behavioral features of preliminary and subsequent versions of the TFQE.

In particular, in hybrid-stress formulations, one often encounters

“kinematic modes” [26,42]; procedures for their identification and

elimination are discussed briefly. However , an evaluation of the stress-

prediction accuracy and efficiency provided by the TFQE is deferred to

Section 5.

4.2 Assumed Stress Distribution

4.2. 1 Selection Guidelines
If the TFQE were to provide accurate and efficient predictions of

interlaminar normal end shear stresses at and near a traction—free edge ,
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it. assumed-stress distribution should be comprehensive enough to permit
representing very closely the rapid variations of each of these stresses
at each interface as a function of distance y (see Fig. 6) from the free
edge. Some guidance in this regard is available from the coupon-problemp
whose features were examined and discussed in Subsection 1.1; as a minimum
therefore, the stress-distribution assumptions of the TFQE should be
capable of representing those observed stress distributions faithfully.
Other mor e complex problems may exhibit more severely changing stresses
than revealed by the available pertinent examples discussed in Section 1.
Thus, more general and comprehensive guidance in selecting assumed-stress
distributions throughout the volume of the TFQE is desired.

Some assistance in this respect may be gained by examining well-known

t three-dimensional stress function formulations, and their implications for
a sequence of special cases. The latter serve to indicate which terms of

a general power series representation for the stress functions must be

- - present for consistency in these several special cases . For example ,
- 

- 
consider for a Cartesian rectangular system the following stress functions

for the case of no body forces :

Morera ’s Stress Functions (43]

. 
____ (4 .la )

~ 
_____ (4 Th)

I,

(4. lc)

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ 
(4.ld )
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~~) 
(4.le)

__ ( 4 .l f )

where ~~~~ *2 4P and V~3 
are known as Morera ’s stress functions . For present

purposes it is not necessary to examine or review the formulation of the
3-d elasticity problem in terms of these stress functions. Instead , it
suffices to take note of the stress expressions which apply in the follow-
ing three special cases:

Case ND-i:

= 
e.2 (,, .-,~ ~~~“
è~~IP ~~~ 

( 4 . 2 )

Case MO—2: *l43 0

H ‘
~N (4.3)
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Case 140-3:

_ _ _  
-r 

_ _ _

1è ’c 
~~~~ 

è~~èz - 
(4.4 )

Similarly, consider for the case of no body forces:

Maxwell’s Stress Functions (43]

a 
÷ (4.5a )

°

~ ~ 
_ _ _  (4.5b)

S’j  ~~~~~~~~~~

(4.5c)

(4.5d)

b -?~4- (4 .5e)

( 4 .Sf )

4
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where X1’ x2 and are known as Maxwell’s stress functions. Similarly,
consider the stress expressions which apply in the following three special
cases for the Maxwell stress functions:

Case MA—i: X2—x3—O -

.1 - 

~p èa- (4.6)

Case MA-2:

4 4

~ 
X~ ~~~~~ ____  

(4.7)
~ ~~~~~~ 

~ -:~:i~ ‘

Case 14A-3: X1 X2—O

, ~ (4.8)

For the present finite element formulation procedure, one may proceed
in general to assume that each stress component within each layer of the
multilayer element varies in x , y, and z according to some suitably
comprehensive polynomial approximation in terms of unknown stress
parameters 8. Also, one may utilize the above special-case conditions
as a check to insure that essential terms in the polynomial expressions
have not been overlooked, or redundant terms are identif ied and deleted.
A more comprehensive and systematic use of stress-function formulations
could be employed perhaps; however , in the present development, distribu-
tion functions for the various stresses were selected so as to

- 
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satisfy the basic equilibrium equations, as well as the traction—free
conditions on the edge AB of the TFQE, and certain interlaminar continuity
conditions on th. stresses and strains. Subsequently, the resulting

distribution or interpolation functions were examined for consistency as
required by the cited stress-function conditions .

Defore discussing the selection of the assumed-stress distributions
further, it is useful to define the geometry and the muitilayer features

of the desired finite element : the traction-free edge quadrilateral
element (TFQE) which is depicted in Fig. 6. This flat—plate multilayer

element shall be described with respect to the local Cartesian rectangular

coordinate system x,y,z for the element with corresponding displacement
u, v, and w; the single traction—free edge is selected for formulation
convenience to be e~qe AB which i. located at y ’O. The origin of the

coordina te system is located at corner A at the geometric midplane of
the element. Without loss of generality and for reasons explained better
later , side DE is chosen to be parallel to free-edge AS; also the
indicated plane passing through points C and F on the non-parallel sides

of the element is parallel to the planes passing through AS and DE. The
TFQE is a multilayer element which need not be symmetric and consists

of “many” layers; its total thickness is defined to be 2H. Each layer

is assumed to consist of one or more plies of unidirectional laminate
which is assumed to behave as an orthotropic linear elastic materials ;
each layer i may have a different thickness (defined to be 2hj) and a

different in-plane “grain orientation” f rom all other layers .
Since free-edge effects typically lead to severe interlaininar

stresses and stress gradients at and near a free edge but diminish
rapidly with distance y normal to the free edge, it is important to
represent the stress behavior in considerable detai l in each layer of the

multilayer laminate for a substantial region (0.95b) of the element’s

width b (A to E’, for example) in the y direction. In particular, fine

detail is desired in region ABC? while CDEF will serve as a transition

region with lesser detail -- providing nodal stations D and E which can
*

A layer may also consist of laid-up plies oriented in sequence such that
the resulting “entire layer ” acts as a homogeneous orthotropic ply.
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connect “compatibly” with appropriate multilayer elements of simpler ____

description. Accordingly, at nodal statio ns A, B , C , and F: - 
____

(a) nodal control displacement u
i 

and v~ are employed at every

layer interface i to accc~~~date the very important warping 
_____

behavior and
- 

(b) nodal control w displacements are employed at only three
locations through the thickness: top, m.tdsurface, and bottom

-— since the stresses are much less sensitively affected by

the w-displacenient variation through the thickness; this also

reduces the number of degrees of freedom and computation

compared with using a wi at each interface.

At each of nodal stations D and E, a total of only five nodal control

generalized displacements are used. These are located at the midplane 
_____

nodal points D and E, and consist of u, v , w , O ( E  - .
~~~),  and O~~(~ ~~ ) ;

where O~ and 0y are the rotations of the vertical plane along x and y,

respectively. This assumption imposes an artificial constraint on c~ , the

alleviation of which is discussed later in Subsection 4.5.2.

4.2.2 Stress Conditions to be Satisfied

In each layer of the inulti layer laminate , the following equilibrium

equations (in the absence of body forces) must be satisfied:

t 0 (4.9a)

.t i~i. + ~
-r1E 

= 0 (4.9b)

÷ 1!!. o
bz. (4.90)
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Also, at each interface i between material layers i and i+l , the fol~owing
interlayer continuity conditions must be fulfilled:

‘a,’ ‘a L e ,
* °

~~~~
) c, ~~~ ~~~~~~~~~ “ 

- 
(4.10)

where superscripts i+l and i , respectively, represent the material in
layers i+l and i. Finally, at the traction-free edge AS of the TFQE ( see
Fig. 6), one must satisfy on the face of every layer:

= .t
~~~ = o (face AS at y 0 )  (4.11)

Since the stresses in the interior of the element are , in general ,
for a loaded laminated structure much greater than those applied externally
to the two surfaces z—±H , the following conditions are imposed at z +H:

~ 0 (4.12)

for the purpose of representing the interior stress field by assumed-
stress expressions to evaluate the volume integral term in Eq. 3.1.
However, non-zero externally-applied stresses or tractions on these
surfaces will be taken into account to evaluate 

~M 
(Eq. 3.11) from the

last term of Eq. 3.1.

4.2 .3 Selected Stress Distributions

As depicted qualitatively for the tension-loaded 4-ply (0/90) and

(+45) coupons in Figs. 1, 2 , 3, 4 , and 5 -- and quantitatively in
Figs. 8—12 , the significant interlaminar stresses at and near the free
edge are and t .  From Fig. 8, for example, it is seen that the
interlaminar a varies rapidly with y (or y/b) as one proceeds along the
normal from the free edge (along y) to the interior, this general type
of behavior of is anticipated for many other “free edge” examples.
Thus, in constructing an assumed stress distribution 0

5
(x,y,z) throughout

1

I 
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the interior of any given layer , it is apparent that a polynomial of high

degre, in y (or y/b) will be required~ note that z is the through-the-

thickness coordinate measured from the midzurface of each layer. Since

for many cases a is expected to vary more slowly with x and z, polynomials
of lesser powers in these coordinates would be plausible; alternatively, a

finer mesh of finite elements along x could be employed readi ly if needed .

Thus, a stress distribution which is quartic in y, cubic in z, and linear
in x througho ut a given layer of the TFQE has been assumed as follows in

terms of unknown stress parameters 8:

4ç~~i,~~~~~) ~ 1(i ) 4 7;(,)4~ 7;(,r) 4]

+ z[T~~)4 ,~ •

~ ~~~~ 4 # - - ~ ‘ (~)A ]
~ “

a 
~ ~~(v) At.

]  

- +;~) f t ]

• $[i~~ ~t 
- • 1~ (~)44 -

(4.13)

where the following ch.bychev t44] polynomials ?
~ 

(y) are used in Eq. 4.13
instead of regular polynomials since numerical tests reveal less roundoff
error when the former are used:
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1 (y) ~-~~~(
‘
~/b) - I

=

1(e) ~~~~~~~~~~~~~~~~~~~ ~

i(~) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (4.14)

where b is the y-direction width of the TFQE as indicated in Fig. 6.
The z origin of each layer is located at the utidsurface of that layer.

For the special case of the (0/90) coupon (Figs . 1 and 3) with aS

uni form C imposed on each end , — 0 and 0; hence integration
of Eqs. 4.9b and 4.9c, respectively, with respect to y gives

* J._ JJ. d~~ 
# 

~~~
, Q, 2) 

(4.l5a)

~~~~ 
-f~ ~ 

f ~ 
(x,~~) 

(4.l5b )

Since at the y—O free surface , and after integration all terms
contain y or powers of y , it follows that

= .0 
(4.16)

Thus, this integration does not add new 8’s. -

Similarly, the other stress which is significant at and near a free
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edge is I and its distribution throughout a given layer of TFQE is
assumed to be

~ ~~~~~ t - - - ÷7~(p),4~]

— - #i~ ) 4]

- - -

4 , [1~ ) 4 -t - - - 
-
~ 7~~) ,4• J

• ~~~ 
-# - - - + i~, 

(
~),4j

- 1~ (g)A.J
(4.17)

Note that the distribution function chosen for I is quartic in y,
quadratic in z, and linear ir4 x. The choice of quadratic rather than
cubic in z (as for a ) was made in an effort to minimize the number of
unknowns introduced without, hopefully, a serious degrading of -the
accuracy of this representation ; the quadratic z dependence for I~~~ leads
(as will be seen later) to a t expression which is linear in z. However ,
the t assumed distribution could have been chosen identical to that
shown for cy in Eq. 4.13 without apparent difficulty.

For the “tension-loaded” 4-ply (+45 , -45) coupon with imposed
uniform € on each end as depicted in Figs. 1, 4, and 5, one finds that
a , a~ , and I are present but are negligible compared with and t~~~~~~.

Accordingly , integrating (equilibrium) Eqs . 4.9a and 4.9b with respect
to y gives , respectively:
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a 
____  • 

‘ (
~~~

) (4.18b)

Since at the y—0 free surface I —r —0 , and af ter ~~tegration all termsyx ys
contain y or powers of y, it follows that

~ (.~i 2 )  ~~~ (4.19)

Next , note that z integration of the &—direction equilibrium equation
(4.9c) with the inclusion of Eq. 4.l8b gives

~ 
-4J 

~‘i~ 
( ) (4 .20 )

It should be observed that Eq. 4 .20 requires the prosonce in a of a
“term” (f 5) depending only upon x and yg the “ f i f th”  bracket term in
Eq. 4.13 fu l f i ll s  this need. Thus, no new 3’s are added after integration.

To this point in the selection of an assumed stress distribution
throughout the inter ior of any given layer of the TFQE, a plausible poly-
nomial expression for the spatial behavior of the stress has been chosen,

Eq. 4.13 involving 40 stress parameters 8 is the resulting assumed distri-
bution for o (x,y,z). Next, calling t*pon features observed in the (0/90)~
“coupon problem” , the y- and the z-direction force equilibrium equations
(4.9b and 4.9c) and the free-edge stress boundary conditions on side AS
of the TFQE were used to deduce appropriate distribution expressions for
a(x ,y,z) and t~2(x~Y.z)I Eqs. 4.lSa and 4.JSb , respectively . Similarly ,

a plausibl. distribution function given by Eq. 4.17 was selected for
T (x,y,a) for the TFQE in terms of 30 unknown stress parameters Bi then
physical insight from the (+45/-45) “coupon problem”, in conjunction with

the x— and y—dirsction force equilibrium equations (4.9a and 4.9b ) and
the f roe-edge stress boundary conditions on free edge AS of the TFQE , was
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used to deduce an appropropriate distribution function (Eq . 4. l8a) for
I ( x ,y, z) and to assess the implied relations: (1) between and
(Eq . 4.18b) and (2) between a and I :  (Eq . 4.20) . The assumed stress
distributions and the resulting expressions just cited are both plausible
and exhibit no apparent inconsistencies. By this convenient but somewhat
circuitous procedure , assumed distribution functions involving a total of
70 unknown stress parameters 8 for any given layer of the TFQE have been
constructed for the stresses 0 , a , t , I , and I . Only a (x y,z)S y zx zy xy x
remains to be constructed.

It is convenient to construct an assumed stress distribution function
for a ( x ,y, ) in the following way . First note that in general for an
orthotropic (filamentary composite) material whose “filaments” lie in the
x,y plane (not necessarily aligned with either the x or the y axis) , the
strain C may be expressed in terms of the stresses a , a , a , and Ix x y z xyfrom the stress—strain relations by:

— S,, cr~~ #~~~~~~~~~~5S 3 I 9~ 5,L VW, (4.21)

where the S~~ are the known compliance coefficienti’ of the material.
Equation 4.2 1 can be rearranged to read

o~ _ k [ s,
-

~~
.#s

,3
o-

~.
.t s

,~~
’ic
,

J # ..
~~
i. 

- (4.22)

Note that distribution functions for CT , , and t have already beeny z xy
expressed in terms of many unknown stress parameters 8. However, an
additional contribution: £/Sll is present; let this be termed where

c / S 11. Whereas in the Fig. 1 “coupon problems” a uniform C~ was
imposed over the ends of these specimens , in general c may have a
significant x,y, dependence in other more general physical situations.
Hence, the contribution 

~ 
in any given layer of the TFQE is assumed to

have the following spati al character:

+
Thez~e Sj 4 coefficients are defined with respect to the x,y,z element
axes -- 1~ot the material axes of the ply.
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(4.23 )
-

~ I + )C~ (4~ + ~~ ~ •

Note that in this form , the special case in which C is uniform is

accounted for by a single term in Eq. 4.23; namely, T0(y)871.
It should also be noted that consistent with the earlier assumed

distribution functions (Eqs. 4.13 and 4.17), the terms in square brackets

1 3 in Eq. 4.23 are quartic in y in terms of Chebychev polynomials, with
-. these bracketed type terms added and multiplied by ~~, x, and x~; hence,

these terms are of the same form as certain terms appear ing in Eq. 4 • 13

and Eq. 4.17. However, Eq. 4.23 includes four terms of a type not used

previously; these involve x 2 : x2891 + x2
~~392 + x

2
y893 + x2y~(394. These

four terms were not inci.uded in initial studies but were found to be

needed to eliminate kinematic modes . This matter is discussed further

in Subsection 4.6.

Returning attention once more to the special case represented by the
( 0/90)~ coupon problem, y-direction integration of the x- and the y-
direction force equilibrium equations Eq. 4.9a and Eq. 4.9b, respectively
gives

~ (4.24a )

~ ‘ 
(,
~ ) 

(4.24b)
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Applying the conditions a~_t~~,.0 at the r’O free edge after integrati on
of these equatiofls yields

~‘ 
(,
~
,) a 

~~ 0 (4.25)

Thus, the assume d stresses have been constructed from basic mechanics
considerations and the require d stress boundary conditions . However ,
these distributions could also be obtained by using the stress functions
discussed in Subsection 4.2.1. For instance, if (see Eq. 4.6) were
der ived as

%I

and substituting for a from Eq. 4.13, the resulting expressions for ay
and t would be the same. Other similarities can- also be derived foryz
Eqs . 4.4 and 4.8 , and the present stress assumptions. However, this
procedure alone is awkward because of the traction-free conditions, and
significant terms could be omitted inadvertently . Thus , probably the
best procedure would be to combine the stress-function approach with
physical insiqht obtained from pertinent examples.

Since the stresses in the TFQE arise not only from mechanical loads
but also from thermal effects, it is necessary to consider the latter
before imposing the interlayer continuity requirements cited in Eq. 4.10 .
Hence, an examination of these thermal—effects terms follows.

4.3 Description of Prescribed Initial Strain
First, note that for an orthotropic ply, the stress-strain relations

may be expressed as



~; 0 0 0 
-

• * * *~
2( S~ S o  O o  a- -

25

s 0 0

* *
= 0 0 o 544 0 0 •

~:
‘ 

~÷
‘ o

0 0 0  O S * o 2-5, 13

o o o S ~-

(4 .26)

The elastic compliance coefficients ~~~~ are defined with respect to the
material axes ~ ,fl , ( of the ply .

Let the distribution of temperature change from a reference unstressed

unstrained state at temperature Tr 
be denoted by T

1
(x,y,z) for any layer

I of the layered plate . For the element let that temperature change

distribution in any layer I be ~~ escribed and assumed to be approximated

adequately by the following simple expression :

;(x,~ ,z)~~Ai,~~~~ ’C t e&; y
~#z— ( i x - +Ec 1~ fl (4.27)

where the origin is located at the midsurface of layer I , and the
quantities ~T1, ~T2 , ... ~T6 are known “fitting” constants used to
describe the T1(x ,y,~~) prescribed data . However , if the ~ distribution
of T1 is more severe than acconmiodated by Eq. 4.27, layer I could be
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subdivided into a number of sublayers4 in the z direction , and the

Eq. 4.27-description employed for each sublayer. Since the material axes
(~~, r~, ~) of the material in layer I might not coincide with the axes
x,y, z of the TFQE element, the “element-direction ” prescr ibed thermal

strains c~~ may be expressed as (where directions ~ and z are defined to

coincide)

• a
/

a aCV
0<

0 0 I

0<. 1 (x,~t,i)

�~

,
Jtz 0 0 o a

- (4.26a )
L 0

or

E
5 

€~~ ç (x ,y, z)  (4.26b)

where a,~, a2 , and a3 are the coefficients of linear thermal expansion

along material axes F~, T1, and ( , respectively , and £ end m are the
“direction cosines” between the x ,y element and the F ,n material axes :

(4.26c)

+Alternati vely to reduce the number of DOF’s one could represent T1 by a
higher-order interpolation function.
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It is useful to recall that with respect to the element axes x, y,  ,
the stress -strain relations for any given or thotropic layer of the TFQE

may be expressed as

5,, S~ S~ 0 0 c_
~

~~~ ~ o 0 f
S3, .~~~ 5~ 0 0 53~ EL

0

o 0 0 
~ ~ t r

• (4.28)

~I ~ * ~ 
- 0 0

or

(4.28a )

where c represents the total strain from the compatible displacement field ,
S represents the matrix of elastic compliance coefficients with respect to
the x ,y, z axes of the element*, a denotes the actual stresses , and
represents the prescribed (or thermal) strains. Pre—multiplying Eq. 4.28a

by S ’
~ and rearranging , one obtai ns

(4.29)

- — —

where C—S~~ could also be written if desired as in Section 2.

These S coefficients are obtained from the ply S~1 values by employing
the pr~per transformations (see pg. 52 of Ref. 2$).



a-— — — —
~~~ ~—- _ _ _  _ _ _ _  _ _ _ _ _

wn_ ____ ___  a - a-—

Since from Eq. 4.26b £0
’~

0T1 and from Eq. 4.29 is defined as
-l o

S C , one may write

—I • ., • •
(4.30 )

where

* c,~i; ~~
Ca,

•
~

• 4
~ a E.; • c~~~~~~ +

r ~ ç, ~;
0

C - o

ç ~: ~ 
# 

cL (4.30a)

In the present formulation a° may be rewritten in a useful alternate form
without loss of generality as 

a

( 4.30b)

This form is consistent with the assumed stress ax given by Eq. 4.22 .
Hence , the stress quantity denoted by a

0 in Eqs . 4.29 and 4.30 and which
is given completely from the known thermal strain C~ may be written in
the following symbolic form:

(4 .3l
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c

Note that the correct total stresses are a as defined in Eqs. 4.28, 4.28a,
and 4.29. These total stresses are represented in the present approach by

the two terms S~~c-a~ on the right-hand side of Eq. 4.29. In turn, the
first term can be regarded as a stress term represented by two parts:
(a) the assumed stress field already selected (i.e., ~~~ a , a5, tyg~ ~~~
and from Eqs. 4.22 and 4.23 , 4.l5a, 4.13 , 4.l5b, 4.17, and 4.24a ,
respectively) and denoted now collectively by aA and (b) a second stress
field yet to be determined and denoted by a

~ 
where subscript “C” may be

interpreted as compensatory since such terms must be devised to accommodate
the following requirements:

(1) equilibrium of each layer of the TFQE,

(2 ) the traction free conditions in every layer on face AB

where y—0,

(3) the interlayer continuity requirements as indicated in

Eq. 4.10, and

(4) the stress-free conditions on the two surfaces z ± H  of
the multilayer element (Fig. 6).

Thus, with this interpretation, one may “rewrite” Eq. 4.29 as

(4.32)

where

— the already—selected assumed stress field

— compensatory stress, field for the known

is to be determined

a° P 8 — “stress field” known from the prescribed
— —0— 0

thermal strains

In the present subsection , only a portion of is discussed -- that

associated with requirements (1) and (2) -- and denoted as a~~ ; the

remainder, a~~, arising from satisfying items (3) and (4) is discussed
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in Subsection 4.4. Hence , for reference convenience , one may write

~~~
— + 

(4.33)
—c ~~~~

In computing a~~~, each term in a° is considered separate ly for
convenien ce. Also, in satisfying equilibrium, the stresses are combined
exact ly as discussed in Subsection 4 .2 .3 .  The stress a° can be writtenx
from Eqs . 4.26 , 4.30b , and 4.31 as

*t ~1;x i~~ ..-~~( ÷ x.t~~ç;)] (4.34)

Satisfying the equilibrium Eq. 4.9a,one obtains the shear stress as

(~) ~~~~~~
(4.35)

which satisfies the traction- free condition at y—O . Note that since a°

is expressed in terms of other stresses (Eq. 4. 30b) ,

(“
~4A = ~~ (t’1,)~4J (4.36)

Next , the stress 0 can be written from Eqs . 4.27, 4.30a , and 4.31 as

f ~ i ~~~~~~~~~ ~~

- 

4.37

~~~~~~~~~~~
Satisfying traction-free conditions at yltO yields

~~~~~~~~~~~~~~~~~~
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However, the remaining terms in y also have to be eliminated because in

satisfying equilibrium (Eq. 4.9b), the resulting shear term

violates traction-free conditions . Thus, the compensating terms arising
from in Eq. 4.33 are

(~) :  [ j v r ÷ A 7~ x # zVr~ (4.38a)

+ ~.(A T~ t A 1x  +

and

(a
~ ) ~~~~~ (cr \ J 4.38b

~ CA i1L~~ 1 I C I I J
‘I

• Next, the stress a° can be written as
S

~~~~
(4 .39 )

+

Satisfying equilibrium (Eq. 4.9c) yields

(t
~
) : [ c ~oj ° 

~~~‘J
(4 .40)

which satisfies Eq. 4.11 at y—0 .

I 
- 
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The str esses t° and are *ero g hence, finally one obtains*2

~ 3~~ (4.41)

The compensati ng term required to satisfy trac tion-free conditions is

(D) 
~~~~~ 

(&: ~~~~~~~~~~~~~~~~ (4.42)

Also for equilibrium, one obtains from Eq. 4.9a

(
~~*) ~f 

dz -
~~~~~~ 

k(Z ,) ~~CA 
- 

CM (4.43)

L ’~y  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Also from Eq. 4.30b ,

~~~~ 
—

~~~~~

, 

[~ C Y)CA J (4.44)

Thus , all terms in have been computed . Combining the terms , one can
s~~~ sr ize and write these a~~ terms as

(~) - f + S,~ ~~~~~~ s,~ ~~~~~~~~~ J

(a—
) = 

a‘~~~CA )

(4~45)
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(t~a)CA J -~ c4

(‘
~~~)CA J~ 

dz

(4 .45

~~~ J~~
E~i d~ -~~ T~~{A7, + ~~~x 

~~~~1~
1
~+A1~. ~)} Cont.)

4.4 Interlayer Continuity and the Remaining Free-Surface Conditions

To this point, the total stresses a in any given layer of the multi-
layer finite element have been described as consisting of:

t’ — (4.46)

where all of the contributions on the right-hand side of Eq. 4.46 have
been defined except for a~~ (called part B of the compensatory stress
contribution). This final contribution can be determined by satisfying
the interlayer continuity conditions and the- stress-free conditions of
the surfaces at s—-ill. It should be recalled that a

A 
for any given layer

was constructed in terms of unknown coefficients so as to satisfy (i) the
force equilibrium equations in that layer and (ii) the stress—free condi-
tions on side AB of the TFQE . Hence , since CJ~ is prescribed , was

chosen to compensate for the “violations” of (a) equilibrium within a
given layer and (b) the stress-free state on edge AB of the TFQE .

Next , theref ore , consider the construction of the proper a~~ such
that all of the aforementioned conditions remain fulfilled while satisfy-

ing: (a) the interlayer continuity condition at interface i given by

Eq. 4.10 (and repeated and clarified here for convenience):

a - 
- 
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a _

= (~ ~ *- ~~~~ ~ ~~ 
)~ £~

(4.10)

( T )  . (~‘f~.1 (6~ )~~,

which must be satisfied at all x,y locations on the interface, where the

ith interface is bounded by material layers i and i+l (of respective thick-

nesses 2hi and 2h~~1) and (b) the stress—free conditions (Eq. 4.12) on
the two faces located at z ±H:

Q : t ~~~ ~~~~~~~ j  0 (4 .12)

Now these conditions will be satisfied exactly for the TFQE by selecting

such that the actual stress a given by Eq. 4.46 will be guaranteed

to satisfy all of the aforementioned requirements. However, this
construction process may be described most clearly perhaps by examining
a few illustrative terms.

Consider , for example, the interface continuity condition on
a (x,y, z) as defined by the following description:

(o~ 
‘
~+ 

~~~ ~~ Cs 
— 

a

Z ’ ~~

A ca , 
(4 .47)

(oi - o~~ #cç

One need not add explicitly the contributions a? in layers i and i+l ;

instead relations of this type supply a set of required conditions which

can serve to eliminate a number of the unknown ~ ‘s already present ,

thereby reducing the number of unknowns to be handled finally. That is,

the eliminated 8’s will be functions of other B’ s and the prescribed

stres ses and the latter part will constitute a~~. Also, it should

Strictly speaking , the variational principal employed does not require
one to satisfy this physically present strain continuity condition; how—
ever, its use in the TFQE formulation reduces the number of unknown B ’ s
without , hop.fulIy, unduly degrading the performance of the element .
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be recalled that was constructed from the Eq. 4.13 assumed function

for a through the use of Eq. 4.15b; hence r
y5 

is expressed in terms of

many of the same B’s that appear in Eq. 4.13. In this B-elimination

spirit, the pertinent equations satisfying Eq. 4.10 will be illustrated

for one typical term taken from one of the following 10 different sets

of terms which can be identified in Eq. 4.13: -

S

Term Set Associated B’s Present Associated T
~
(y)

1 8
~ 

86 811 816 
T0
(y)

2 
~21 

826 821 836 T (y)

3 82 87 812 817 T1
(y)

4 
~22 827 832 837 T1

(y)

5 83 8~ 813 818 T2
(y)

6 823 828 833 838 
T2

(y)

7 84 8~ 8~~~ 819 
T
3
(y)

8 824 829 834 839 T
3
(y)

• 9 8~ 8
~o 

815 820 T4
(y)

10 825 830 835 840 T
4
(y)

The continuity conditions are to be satisfied exactly term by term . -

Therefore consider, for example, set 2 which reads for the ith layer :

(A ) = ~~ 7 (y ) + + + 

~i-~’L] 
(4.48)

Also, from Eq. 4.39, the corresponding type of term in ci° reads

- . 
(

~~~~0) f 3 (4 •• 49)
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Collecting,
= (0_ A) 

~~~~~ 
) (a...

)

A A~ M1 
(4.50)

-~~~(~ i~~i&~)J

Hence, from Eq. -4.45, a~~—0.

For the terms (a~)~ given by Eq. 4.50, Eq. 4.lsb may be used to
evaluate the associated (t )yz i

(i;
~)~ .f. (c,~~

) 
~~~~

(4.51)

. _ f
~ 4 ( + i,4 + .j 4 - a::

:: 
~~~ ~

where 2hi is the thickness of the ith layer .
Next , let Eq. 4.50 be used to write for “set 2” the a continuity

condition at interface i where z — -h~~1 in material layer i+1 and z — +h
i

in material layer i:

~~~~~~~~ 
— 

(
~~~

) (4.52)
S€t a ~ 1.
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or 
- 

- 
-[A11’ 

~~ ,4~” + . /4 -~ ,4~’ ~~~‘(~~r~~
’ 

~~ ~
-i
~~~)]

• ~ 4L ,4~ ~~
. — ~(A 1 ’.~. k ‘~~ )3 - 

(4.52a)

Rearranging Eq. 4.52a, one obtains

. (4: 3

- ~~
- =4 - ~ ~~~~~~~~~ 

41 - 
-

~~~~ A6
- j - (4.5Th)

~~~~(L~
T ’# L4 

~~)_ ~~~~~i#
:(

~~~~~~~_ . ~~i~ ”)

Similarly, writing continuity of r
yz at interface i for the present set-2

term gives

• 
~~~~~~ (4.53)

or

[A ~ ~A’ ~~ 4~-A~ 
- 

~~~~
‘

(4.53a)

Rearranging Eq. 4.53a, one obtains

- 4’-~- -&,,4,’-~ 4i$4 A~
’4
~ -4~ ~~ ~

~ 4 
~~~~~ ~j

’’  ~~7;’•” (4.54
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One can also write for these “set—2” terms the continuity conditions at

interface i-l to obtain another equation each similar to Eq. 4.5Th and to

Eq. 4.54. Therefore, one has four equations from which one can solve for

8
~~l

: 8
~6
: 8

~~
i and 8~6 in terms of the remaining B’s and the “known thermal

terms” ; thereby, one can eliminate 8~l. B
~ 6. 8

~~~
t and 836

. Note that if

the ith interface is traction—free (i.e., z—H), then the 8’~~~~ in Eqs .

4.52b and 4.54 are zero, but the B’s are eliminated as before. Also ,

if the total number of layers is even (Fig. 13) only traction-free

conditions need to be satisfied at z=H for the last layer. Hence, in

this case only 8
~l 

and 8~~6 
are eliminated.

Similar to a , the interlaminar shear stress T (Eq . 4.17) can alsoz zx
be separated into 10 different sets of terms:

Term Set Associated B’s Present Associated T~(y)

-~~ - 1 841 a 846 851 T
0
(y)

2 856 861 866 T (y)

3 842 827 852 
T1
(y) 

- 

a

4 857 862 867 T
1

(y)

s 843 848 853 T2(y)

6 858 863 868 T2 (y)

7 844 849 854 T3(y)

8 859 864 869 
T
3
(y)

9 845 Bso 855 T4 (y)

10 860 865 870 T4 (y)

In any layer i, to satisfy traction continuity at both interfaces, two

B’s are eliminated from each set.

Finally, in satisfying c2 continuity, Eq. 4.23 is divided into 12

sets of terms:

a 
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a-

Term Set Associated 8’s Present Associated Function of y

1 871 876 T0
(y)

2 891 886 T0(y)

3 872 877 T1(y)

4 882 887 T1
(y)

5 873 87$ T
2
(y)

6 883 8~~ T2 (y)

7 874 879 T
3
(y)

8 884 T3(y)

9 875 880 T4
(y)

10 885 890 
T4

(y)

11 891 -892 1

12 893 894 Y

— 
- 

In any intermediate layer (e.g. layer 3 in Fig. 13), both B’s are

eliminated- to satisfy £ continuity at both interfaces. However, at

layer 1 (and layer 5 when NL—5), only one 8 is eliminated since continuity
is required only at interface 1 (and interface 4 for NL—5).

Thus, many of the layer B’s are eliminated to satisfy continuity and
traction-free conditions. A laminate with NL layers, init ially has 94 B’ s
per- layer; hence, for the entire TFQE:

Total Betas — 94 NL (4.55)

At each interface there are 3 traction continuity constraints (Eq . 4.10)
and since there are 10 different sets of terms for each stress, 30 B’s
are eliminated. For NL—1 interfaces:

Number of Betas Eliminatel

from Traction Continuity — 30 (NL— l)

Conditions J (4.56)
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Also with 3 traction-free conditions at the two surfaces z—+H , one
eliminates for the 10 sets

Number of Betas Eliminatedia 

— 30(2)  — 60
(Traction-Free Conditions ) J - (4.57)

Finally, for £x continuity at each interface,, 12 B’ s are eliminated from

the 12 sets of terms.

Number of Betas Eliminated)
- —  12 (NL—1)

(t
~ 
Continuity) J (4.58)

The total number of B’ s eliminated are obtained by summing Eqs. 4.56 ,
4.57, and 4.58:

Total Betas Eliminated — 42NL+l8 (4.59)

Thus, after satisfying Eqs . .4.10 and 4.12, the independent B ’s left are
(Eq. 4.55 minus Eq. 4.59)

N
8 

— 94NL — (42NL+l8) — 52NL-l8 (4.60)

- For convenience, these 8 eliminations are st~~n*rized in the following

tabulation:

At Each Surface or Interface
- _________ _______  _________  No. of Total

onstraint No. of Total per Surfaces Number
Condition No. of Term Surface or or of

Condition: Sets Interface Interfaces Condition:

Traction Continuity
at Each Interface 3 10 30 NL—l 30(NL—l)

Traction Free
Conditions at ~~o
Surfaces: z—+H 3 10 30 2 60

£~ Continuity at
each Interface 1 12 12 NL— l l2(NL—l)

rotal Number of Conditions or B’ s Eliminated : 42 (NL l) +60

~emaining B ’s: 94NL - (42 (NL—1)+60 ] — 52NL—l8

60

________  _____  ____  - 

a
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The 8 elimination is done in alternate layers and this is shown in

Fig. 13. This procedure allows the eliminated B coefficients to be

dependent upon only the adjacent—layer coefficients. This reduces the

band-width of the H-matrix (Eq . 3.6) because if coefficients are eliminated

in every layer , the H-matrix will become fully populated. The savings in

computer storage by “alternate—layer elimination” becomes significant with

an increase in the number of layers . For a four—layer laminate (NL=4,

N
8=l90) for example, the H-matrix requires 16,417 words; the saving in

storage space compared with the full population scheme is 9%. However , if
NL 8(N

8
=398) , the storage required is 46,989 words , and the saving is 41%.

Thus , 8 elimination in alternate layers significantly reduces the storage
space required for the H-matrix. The maximum bandwidth of H is 197.

4.5 Assumed Displacement Field

4.5.1 Selection Guidelines

Of principal interest in the present study are multilayer (composite

laminated) plates which can be characterized as ranging from thin to

moderately thick (roughly 4 using the nomenclature of Fig. 1). Since

information of “ fine detail” is needed in a region near a traction-free

edge where (a) interlaminar stresses of significant magnitude and rapid

variation can occur and (b) pronounced warping displacements can appear,

the nodal control inplane displacements u’ and v1 are included at each
layer interface at “free—edge” nodal stations A and B as well as at nodal
stations C and F on the non-parallel sides of the TFQE as depicted in
Fig. 6. These significant and rapidly varying stresses are confined roughly

to a “boundary layer” region between the free edge (y=O) and along the y
direction of about one laminate thickness 2H in extent; hence , consider-
able detail is needed in this region (ABCF ) of the TFQE . In this important
“free—edge effects region” AB~F of the TFQE, a lesser level of detail is
needed for the w—displacement behavior since the interlaminar stresses are

a less sensitively affected by the variation through the thickness of the

w displacement; accordingly, at nodal stations A,B,C, and F of the TFQE,

a control w-displacements are selected at the geometric midsurface as ~
M , at
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the bottom as ~
B, and at the top surface as ~

T, where respectively , z=0 ,
s—-H , and s--I-H.

Since it is intended that the TFQE be attached at nodal stations D
and E (side DE) to another multilayer finite element of simpler but
appropriate description such as MLP3X of Ref. 26, region CDEF of the TPQE
is a transition region with a total of only 5 nodal control degrees of
freedom defined at the s-0 location at node I) by uD, vD, ~

D 
0D, and

-- and similarly at node E. Next, it should be recalled that the
Modified Principle of Complementary Energy , Eq. 3.1, upon which the
present TFQE hybrid finite element is based requires for static loading
problems assumed-displacement information only along the boundaries of
the element. However, for dynamic response problems one must account
for the inertia forces throughout the volume of the element; for this
purpose , the variational statement given by Eq. 3.34 will be utilized.

Accordingly, the selections of the assumed displacements along the
boundaries and in the interior of the TPQE are discussed in Subsections
4.5.2 and 4.5.3, respectively.

4.5.2 Boundary Displacements
As noted earlier , assumed displacement distributions are needed for

the edge-bo undary regions BC , CD , DE , EF , and PA (see Fig. 6).  Along
each of these regions the displacements u, v, and w are each assumed to
vary linearly. For each (ith) layer u and v are defined in terms of
(1) a coordinate ~ measured from the ntidthickness of the ith layer (which
is of thickness 2h

i
) and (2) a normalized boundary coordinate s defined

such that 0<s<1.

Accordingly in the ith layer , u’(s, ) from station B to C is assumed
to be

a’(s,!) (o - .s- * -
~~~~~ ) 

(/- s) Lç4. (o - .r - ~~~
- s) L~~

- (4.61)
5 ~ ,

‘
~~(o.s_+,) s L4

C~
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Similarly, v~(s,z) from B to C is assumed to be given by an expression
like Eq. 4.61 with ~~~~ and u~ replaced by ~~~~ and v~, and and
replaced by v~ and v~. Also, similar expressions apply for u (s,z)

and v~ (s,z) from F to A , where one simply replaces nodal interface
quantities having subscript B by F and C by A. Next, along BC the

quadratic w-displacement through the thickness at each nodal station is

assumed in turn to vary linearly from B to C as follows:

= ( i ~ s) ~~~~~~(2) + 5  4.62

where
-~~~~~ 

,lv
t~~~~l)  

~~~~~~~~ 
.
~-(i --.-.a) w~

(4 .62a)

sL. /~‘J ~ 6

• “•(_f-) *(; **) .~~~
- ~~~~~~~~~~ ~~/ I  

a

8 (4. 6Th)
~~~ /, 

\L  ~~,.

• ~~~ NJ FT c

and z is measured from the midplane of the entire multi layer configuration
(see Pig. 6) .  From F to A, w~ (s ,z) is given by expressions like Eqs . 4.62 ,

4.62a, and 4.62b except that subscript B is replaced by F and C by A.

This completes the assumed boundary displacement descriptions along
bow, iry segments BC and FA.

Next, consider segments CD and SF. For the ith layer u
i(s,z,z) for

segment CD is assumed to be

— Li(s~~~,z) =(o .s - 4) ( i_ s ) u~ # (b- 5-4 ) (s~s) ~~
(4.63)

+ S

- . where s the normalized boundary coordinate from C to D (or E to F) such

that 0<s<1. For v~ (s , , z ) ,  a similar expression applies with all u’s
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D Dreplaced by V ’s and 8 replaced by -O . Similarly from B to F , an

expression like Eq. 4.63 is used (for u (x,z,z) and for v (s ,z ,z) )  where

label C is replaced by E and D by P. Finally, the w~(s,z) from C to D
is assumed to be

(4.64)
k~- ( S ,a i) m ( l - S)  “~(z)+5 t.,~(z)

where

~ (~
) 

~ 
tu~~ ~f( ~i) dz 

64a)

Note that since only 5 control degrees of freedom are used at node D, it
is implied that C~~O at D (and in fact all along side DE); since the TFQE

is a “three—dimensional” element, the stresses are very sensitive to this

constraint and behave erratically if not “alleviated”. Hence, it has
dw -been assumed that — is a constant from C to D (and from E to F) with the

value taken to be the computed at station C: 
~E~C 

(or at station F:

when considering w
E
(z)). This assumption is valid if (1) C (or F)

is at least a distance of 2H away from the traction-free edge AB and •

(2)  the distance CD (or SF) is small —— in which cases these inter-laminar

stresses in this region become negligible .

Finally, along side DE, u’(s,z) is assumed to vary linearly with s
from D to E as follows:

L1 (5 ,z) =(l - 5) U) # 5  LL( ( S) 3. ~~ #~~.z- 9’ (4.65)

For v~(s,z) one uses an assumption similar to Eq. 4.65 where the u ’s are

replaced by v’s and O~ is replaced by -O~ . Also,

( 4.66)
5 7 ~) (l -5)  ~~ t~z ) # 5  t (z)

a 

where W
D 
(z) is given by Eq. 4 • 64a and W

E 
(z)  by 

a

~~~~
‘ (4.66a )
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As pointed out earlier, the element has two restrictions on its

geometry, without loss of generality: vertical planes through DE and CF

must be parallel to the traction-free edge AB. These restrictions have

been imposed since (a) otherwise, difficulties may arise because of

element distortion effects and (b) the stresses in this region are essen-

tially linear in x.

collecting terms from Eqs. 4.61 to 4.66, the boundary displacements

of the TFQE can be written in the matrix form of Eq. 3.4 as

(3.4 )

The terms q in Eq. 3.4 represent the nodal degrees of freedom such as

~~~~ v~~
1, w~ etc., and the matrix L is the interpolation function of

q along the element boundary.

Finally, note that along traction-free edge 1~B , no displacement
‘1

variations need be assumed since- the surface tractions are zero , and the
integral in Eq. 3.7 vanishes on this edge.

4.5.3 Interior Displacements

a 
In order to account for the inertia forces throughout the interior

of the TFQE for- dynamic analysis purposes , an internal assumed displace-

ment field is needed -- to be used in conjunction with Eq. 3.34 for

For- present purposes the internal displacement field u for the- TFQE

is constructed in two parts - Part 1 consists of ABCF, and part 2 is CDEF.

In each part the nodal degrees of freedom at each node are interpolated F

bilinearly to provide an estimate of the interior displacements. The 
a

displacement field is thereby compatible across face CF.

First, consider region ABcF. At any given node, the displacements
u, v, and w are functions of z and z as given by Eqs. 4.61 to 4.66 and/or

a I equations of those forms. For example, at node B one may obtain %(z) in

the ith layer from Eq. 4.61 by setting s—0 thereby obtaining:

a (oac*i
) ui” ..(o -s_ .~.) ~ (4.67)
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where ~~~~ and u~ serve as two of the 2 (NL+l) +3 generalized nodal displace-
- 

- 
ment q8 where NL is the number of layers and

i • 4 .1 J 4 $Lf~ ~~~~~ 4 M(?
~# w L ~~~~~

..II fr 
~‘ P. ~‘ ~ ~‘J  (4.68)

Similar generalized displacements apply at nodes A, C, a~ 1 F. One may

obtain v~ (i) and wB (z) similarly. Next, the nodal values at nodes A, B,
C, and F of uA

(z) , vA
( z ) .  and W

A
(S) at node A , for example , are used as

control values for bilinear interpolation in terms of two normalized

coordinates ~ and i~ def ined such that (~~,fl) — (0, 0) for A , (1,0) for B,
(1,1) for C, and (0,1) for F. Accordingly, the bilinear interpolation

functions to be applied to the nodal functions of z and z at nodes A , B,

C, and F , respectively are:

N (
~~~) :(liI)( ..t)

N6(~
,t) <‘- -

~
)
~

(4.69)

i~i(;~~) :(i-~)t

Thus, one can write the element x,y coordinates in terms of the coordi-

nates ~ and r~ by the following relations [30]

(4.70)

~~~~ ~ ~~~ U%(~~~)#W, ‘~F (it)

Hence, for example, one may express u(x,y, ) or u(~ ,ri,z) in the interior
of region ABCF by

_ _ _ _  



~

where one portion of %
(z) is as given by Eq. 4.67. Similar expressions

hold for v(~,r),z) and w(~ ,fl , z).
Collecting Eqs. 4.67, 4.68, and 4.71 (and similar equations to

provide all contributions to u~(), v
i
(), w(z) at nodes A, B, C, and F),

one may write the interior displacement field in matrix form as

U.

(4.72)
= ‘V

- 3x I  3 X ( ~~~NL. *1~lO) (g NL#.t0)~~~

For region CDEF, one proceeds in a similar fashion to construct an

interior displacement field description analogous to Eq. 4.72.

4.6 Element Property Evaluations and Features

4.6.1 Evaluation of Element Quantities

F The finite element quantities of final interest are k, 9M’ ~T’ 
and in

as given by Eqs. 3.14, 3.11, 3.15, and 3.36, respectively. The evaluation

of in involves a volume integration, k and 
~T 

require both volume and
surface integration, but involves only surface integration. Auxiliary
quantities needed in some of these evaluations include ~~ ‘ 

~~~
‘ 

~~~~
‘ 

~~ ‘ 
and

~~ 
given by Eqs. 3.6, 3.7, 3.8, 3.9, e- 3.10, respectively; H and

- 

I 
require volume integration, whereas 

~~ ~~‘ 
and 

~~ 
require only surface

integration.

First , consider the quantities k , 
~M’ ~T’ and the auxiliary quanti—

ties H, G, 
~~ 

G
t~ 

and In the volume integrals (Eqs . 3.6 and 3.8)
the integration along x is carried out analytically but numerically along

a 
y using an eight-point Gaussian quadrature scheme (29 ,30]; the integration

• in z is uncoupled from x and y, and is done analytically. The surface

integrals (Eqs . 3.7 , 3~9 , 3. 10, and 3.15) are computed analytically along
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DE. but along ED and BA an eight-point Gaussian quadrature scheme along s

is used; the z and z integrations are done analytically .

Finally , the volume integration scheme used to evaluate the element

mass matrix rn is with 3 by 3 Gaussian quadrature in the x ,y plane and by

analytical integration in z.

Note that the 11 matrix (Eq. 3.6) is a synsetric, positive-definite,

banded matrix. In computing B f rom Eq. 3.12b -- repeated below for

convenience,

‘~ ~~~~~~~~~~~~~ ! ~~~ (3.l2b)

the matrices 11 1G and are obtained by the Gauss-Doolittle triple—

decomposition/sequential solution method discussed in Subsection 3.1.2.

This avoids computing H 1 ; thus , computing time and memory storage space

are reduced. Note that (following the ~cocedure in 
Subsection 3.1.2) in

computing H 1G, the solution is stored so as to replace G by 0
1G. Thus ,

G is destroyed but one needs it to compute k (Eq. 3.14). The direct

approach would be to save G at some temporary location before

computing H 1G. However, this imposes an additional storage burden which

is significant since the G matrix is large. As an example, a 3-layer

laminate requires a storage space of 7452 words and this increases with

more layers .

An alternate method as described below is used to avoid this excess

storage. The H matrix in factored form jg

-~~ 

~~~~~~~~~~~~~~ (4 73)

Similarly , H 1 can be written as

_ 1 _~~ 
_ i

H (Li) ~i, (
~) 

(4.74)

Using Eq. 4.74, H
1G and k can be written as 

a
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H ’G~I (L T)
h il

( L )
_ I

G, (4.75a)

~~ 
s~~~

T

(~~~)
’
2 ’(L )

’
~~ 

- 

(4.75b)

Now let
R

— (4.76)

Substituting Eq. 4.76 into Eq. 4.75, one obtains

V — T ’4~~-1 _~I (G~ : ( L ) 2) R
“-  / — (4. 77a)

( 4 . 7T h)

The matrix R is easily obtained by forward substitution and is stored in
G (similar to Eq. 3.25) . Next using Eq. 4.77b, k is computed; then using
Eqs . 3.27 and 3.28, the solution procedure for H 1G is completed and
stored in G. Thus , all quantities are obtained without any extra storage
space requirements. Using the computed matrix 11 1G, the thermal loads
vector is evaluated by substitution, 

a

4.6.2 Kinematic Modes and Their Elimination

The strain energy, U, of an element can be written as (see Eq. 3.13)

~~~~~~ , ~~~~~~ 
~~ 

(4.78)

When the nodal displacements are the rigid-body modes of the element
the strain energy U should be zero, since no work is done. However, in

the hybrid formulation , it is possible to have additional modes which

also result in zero strain energy; these are called “Kinematic Modes”

(26 , 42].  The presence of kinematic modes (like rigid body modes) renders
th. stiffness matrix k singular. For example, if there are rigid body
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modes and n~ kinematic modes, an eigen analysis of k would reveal

zero eigenvalues. Hence, the stiffness matrix k to be nonsingular would

require fl
R
+fl
K 
appropriate constraints.

Kinematic modes like rigid body modes if suppressed by constraints

will not affect the solution to any problem. However, if the constraints

are insufficient, they render the assembled stiffness matrix K singular

and no solution is possible. These modes are a “pseudo effect”, and

can be eliminated by adding appropriate terms to the stress assumption

(Eq. 3.2) .

Kinematic modes occur when the assumed stresses do no work on the

boundary for these modes. This work term in Eq. 3.1 is

hi =J
’

T’ U ds (4.79)

~ 
vv~

= work done by boundary tractions

where T is the boundary traction, u* is the boundary displacement vector

and ~V is the boundary surface of the nth element. In matrix form one

can write WB as (see Eq. 3.5 for this term)

~~~~~~~~~~~~~~~~~ 

~~~‘ 
(4.80)

Thus kinematic modes , 
~~~ 

by definition must satisfy 
a

w6 ~ 
(4.81)

— — —

for all B. However, by adding appropriate stress terms, this pseudo

condition can be corrected.

In formulating the stresses for the TFQE , initially 90 betas were

assumed in each layer. These stresses are given in Subsection 4.2.3,

neglecting B91 to B94. However, an eigen analysis of the element

stiffness matrix k revealed 8 zero eigeiwalues. Since the TFQE is a

complete three dimensional element, there are 6 rigid body sodas; this

results in 6 zero eigenvalues in ii. Thus, there were 2 kinematic modes.
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In eliminating kinematic modes , two steps were taken:

1. Identify the nodal displacement vector of each mode.

2. Seek suitable additional terms in the stress assumption such
that W

B j’ 0 for 
~~ 

(Eq. 4.81). 
-

In the eigenanalysis, along with the eigenvalues one can also compute
eigenvectors 

~Ev~ 
These vectors include (a) the rigid body modes

and (b) the kinematic modes 
~~~~~ 

Thus ,

~ I 
6~ (4.82)

~~EV

where aR and b
x are constants. Separating the eigenvectors into and

is difficult; hence, an alternate method was followed.
Before proceeding with the eigenanalysis, the following 6 nodal

degrees of freedom in the TFQE (Fig. 6) were constrained:

L4~~ t
~E 
) LJ ~~~a ,  G~ç~ ~ 

u- a4~4 (4.83) 
a

These constraints suppress the 6 rigid body modes of the element. Thus,

an eigenanalysis of the constrained k gives the two kinematic modes of

the element. These modes are functions of the nodal displacement v only
and are shown in Fig. 14. At A, B, C, and F the v is uniform through the
thickness; that is, no warping occurs. Note that these modes are not
uniquely distinguishable from each other . As an example , if both kinematic
modes were subtracted from the rigid body translation mode in v ( i .e . ,  v 1) ,
one would obtain v

E
.v
D~

l and the remaining nodal displacements would be

zero. Thus, two suitable stress terms to suppress both modes would be

determined, but specific correlation of each term with a mode is not

possible in this case.

The stress t does work because of the v displacements along sides

BD and BA; also, the modes are equal on both of these faces. Hence, an
unsysmietric term which is linear is x is required in to suppress - -

these modes. However, an inspection of reveals that such terms are
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present already . For example , from Eqs . 4.17 and 4.l8a, there are terms
like :

x f r ( ~ ) ~ /~, , ~fr ,(,) c9 etc. (4.84)

But, a careful analysis shows the reason that these terms did not suppress
the kinematic modes. The terms given in Eq. 4.84 are computed from I
by the relation

= f_ _*!-a ~~ (4.85)

from Eqs. 4.18a and 4.19, where z is the layer axis with its origin at
the layer midplane. One can transform to the laminate axis z by the

linear relation

z -# C ~ (4.86)

Thus, the inplane shear stress can be written for the whole laminate as

z — c f~.3~ d1 (4.87)

where C is an appropriate constant. The kinematic displacements are

independent of z; substituting from Eq. 4.87 and for u~ in Eq. 4.79 ,
one finds

~ 
•$z~ ~: ~

~~~~~

L 

(4.88)ov,l.
The integration in a is uncoupled and can be dc-ne first. Thus , one can
write Eq. 4.88 ~~
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~cf~ fd~ d51~~ :N 
a ( 4.89)

since surfaces a—-I-H are traction-free (Eq. 4.12) . Thus , other terms are

f needed in to suppress the kinematic modes.

The two appropriate terms are (see Eq. 4.23)

= x r4s ~ X 
~ (4.90)

and by Eqs. 4.24a and 4.25:

a 

a — 

(4.91)

In order to permit satisfying c~ continuity at each interface , 892 and
894 have been added, but these are ineffective in suppressing the a

kinematic modes since they are odd functions of z and vanish during
integration. Thus, the two kinematic modes have been eliminated.

Finally , as pointed out in Ref. 41 for a hybrid element, if “rn” is
the total number of independent B’s, “n” is the total number of nodal
displacements q, and “L” is the number of rigid-body modes of the element,
then a necessary* condition for avoiding kinematic modes is

(4.92)
~~~~~~~~ ?t __

~~!

• However, satisfying this condition does not ensure kinematic stability;
accordingly , care must be taken not to omit important terms .

*
But not a sufficient condition as the present study has demonstrated.
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4.6.3 TFQE Region Proportions
There is one geometric parameter in the TFQE (Fig. 6) which should be

carefully prescribed for each problem. This parameter is the distance AE ’
denoted by the distance “bTM . The width b should be sufficiently large
such that as y increases the interlaminar stresses decay completely when
plane CF is reached. This is important because at y—b no warping is
allowed , and this would impose a pseudo constraint on the solution . In
the (0/90)~ and (±45) coupon problems discussed in Section 1, the
boundary layer length is of the order of the thickness (2H) of the
laminate; hence b/I 2H) ‘2 is appropriate. However, other problems could
require a larger (or smaller) b/(2H) ratio. Thus, a recommended rule is

to use (b/ (2H) ] 
l
2 as an initial estimate; then from the interlaminar

stress solution , the ratio can be increased or decreased accordingly.
Note that it is also important to keep b a minimum, since the stress
assumption will have difficulty representing zero interlaminar stress

because of insufficient terms.

Based upon experience in the present study, the intermediate nodes
C and F are located at y—0.95b. The distance E’F’ (Pig. 6) is kept small
because of the assumptions made in Subsection 4.5.2 (see Eq. 4.64a) .
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- SECTION 5

TFQE EVALUATION AND APPLICATION TO THE STRESS

ANALYSXS OF LAMINATED PLATES

Reported in this section are results predicted by using the traction-
free edge quadrilateral element (TFQE) and comparison with available
predictions for several illustrative problems in which severe interlaminar
stresses occur at and near traction-free edges of mechanically-loaded or

thermally—loaded multilayer laminated “plates”. Principal attention is

devoted to problems involving static loading. However , an illustrative
example for a multilayer plate subjected to transient mechanical loading

is included. The static and the transient resp onse examples are discussed
in Subsections 5.1 and 5.2 , respectively .

5 1  Static Loading Problems 
-

To illustrate the utility and accuracy of the TFQE element, relative-

ly simple problems for which independent solutions were available were

a chosen. These consist of 4-layer laminated composite plates with the

following syninetric layer stacking sequence: (a) (0/90)~ and (b) (±45)~
as shown in Fig. 1. These two different ply orientations and stacking

sequences are intended to show the TFQE prediction accuracy and to confirm
the proper implementation of the analysis in the associated computer
program . In addition , this assessment includes for each case the presence
of (1) mechanical loads or (2 ) thermal loads since independent solutions
are also available for each.

Another important physical situation where severe interlamirtar

stresses occur is that of cutouts or “windows” in multilayer composite
plates and shells. Accordingly, this type of problem is investigated for

two tension-loaded flat plates with a circular hole: (1) an isotropic

a plate and (2) a 4—layer (0/90) laminated plate.

These six examples for both illustration and evaluation are discussed
in Subsections 5.1.1 through 5.1.6.
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An experimental investigation of the delami nation behavior of

layered composites was carried out by Harris and Orringer (4 1 . Two types
of coupons were tested: (a) ( (±26)

2/901$ and (b) [26/_26 2/26/90]s. Both
specimens were analyzed by using the TFQE ; the solutions are discussed in
Subsection 5.1.7.

5.1.1 Tension-Loaded (0/90)~ Coupon

This coupon specimen is depicted in Fig. 1. For the present example,

its dimensions are 20h , l6h, and 4h along directions x, y, and a, respec-
tively. Each layer of the symmetric 4-layer (0/90)~ plate has a thickness
h For analysis, advantage has been taken of symmetry about both the x

and the y axis; hence , only the quarter-plate has been modeled . Further ,
this quarter plate has been represented by a single TFQE element; accord—
ingly, as indicated in Fig. 15 its dimensions are loh, Sh , and 4h along
the x , y, and z directions, respectively. On the four x or y boundaries,

the conditions imposed are: (1) the entire faces at y — 8h and z — +H are
traction free , (2) the symmetry displacement conditions u — 0 and v — 0
are imposed on the “entire face” at x — 0 and y — 0, respectively, and -

(3) a prescribed displacement of uniform u is applied at x — lOh such
that £ l.0.+ Finally , the principal material properties of each ply are:

E ,~O * ‘0’ ,64a 
, 

g 1 fria
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— Of particular interest is the normal stress at the symmetry-plane
interface a — 0 between plies as a function of the distance y/b. The TFQE
result is shown in Fig. 16 together with (a) the finite element result of
Wang and Crossman (8] obtained by using assumed-displacements constant-
+
This loading is equivalent to an applied stress, — 1.1 x l0~ psi.
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strain triangles, (b) Pagano’s prediction (12,131 by Reissner’s approach,

and (c) the assumed-displacement QUAD8 solution (Section 2). The TFQE

prediction for agrees well with the other predictions and exhibits a

very large a stress with a steep gradient as the free edge is approached.

The shear stress T at the 0/90 interface where z — h is shown inyz
Fig. 17 -~s a function of y/b. The solutions are in reasonable overall

agreement but the location of the peak value of Ty5 predicted by the TFQE

differs from the other approximate solutions shown . However , a finite

difference solution by Pipes [1] shows a value of (T ) -0.11 x 106yz max
psi which occurs near y/b = 0.875; the TFQE solution indicates that

(Tyz)max -0.17 x 106 at y/b ‘ 0.875; and the solution by Pagano shows
(•tyz)max ‘ -0.23 ~ io6 

at y/b 0.975. The QUAD8 prediction has not been

plotted here because of stress violations of its solution on the 0°/90°

interface near the free edge (see Section 2).

The cl
z 
and tyz solution obtained by a single TFQE element tends to

oscillate about zero from y/b — Ô to about 0.5. This phenomenon exists

because the stresses in the TFQE are assumed in polynomial form, but have

an insufficient number of terms to represent zero exactly. However, these

oscillations do not affect the significant portion of the stresses near

the free edge, y = b.

The distribution of a through the thickness is shown in Fig. 18.

The maximum occurs at the midplane z = 0 and the stress is continuous

across the 0/90 interface unlike the assumed—displacement QUAD8 solution

discussed in Section 2. To check for convergence, each ply was represented

by two layers (see Fig. 15); this solution -(called 8—layer TFQE) is also

shown. The solution appears to be converged.

In the other approaches (Refs. 8, 12, 13, and the QUAD8 solution),
only the upper half of the laminate (z > 0) was considered because, the
problem is symmetrical about z — 0. In spite of these advantages, the
unknowns in each of these approaches are significantly large, and are

tabulated below along with the modeling data for the TFQE solution:~

+
The finite difference solution Ill is not included in the tabulation,
because , the stresses did not converge at the free edge.
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Method of Portion of Laminate Total Number
Analysis Thickness Modeled of Unknowns

QUADS Half Thickness (z>0) 1490 degrees of
(Section 2) freed om

a Wang and Half Thickness (a>O ) 678 degrees of
Crossaan (8] freedom

Pagano (11,12] Half Thickness (z)0) 138 unknowns

TFQE Total Thickness 62 degrees of
4-layer freedom

TFQE Total Thickness 94 degrees of
8—layer fre °~~m

Thus , the TFQE is numerically very efficient compared with the other

methods . Also note that the TFQE is a full 3-dimensional plate element

which is applicable to more general problems .

5.1.2 Thermally—Loaded (0/9O)~ Coupon

This specimen is exactly the same as discussed in Subsection 5.1.1

and shown in Fig . 15, except that only thermal loading is present and is

represented by a uniform temperature change t~T — 1°F ; this configuration
and thermal loading condition has also been analyzed by Wang and Crosaman

(45]. As discussed in Subsection 5.1.1, quarter-plate modeling by a

single TFQE with NL — 4 has been used. For this case the boundary

conditions are: (a) v — 0 at y — 0 (b) u — 0 at x — 0 , and (c) the faces

at x — lOb , y — 8h , and * — +H are stress free . The princi pal material

properties of each layer are the same as those cited in Subsection 5.1.1,

in addition, the thermal expansion coefficients are — 0.2 x 10
6,0? and

ct~~— a 5 — l 6 x l0 6/°F.

The TFQE-pr edicted inter laminar normal stress a
~ 

at the midplane

(a — 0) is shown in Fig. 19 as a function of y/b and is compared with

the assumed-displacement constant—strain triangle finite—element solution

of Wang and Crossman (45]. These two solutions are seen to compare well
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The normal stress Q~ (Fig . 20) is shown as a function of location z
through the thickness at fixed stations y at and/or near the free edge
for : (1) the TFQE solution at y = b and y = O.9b and (2) Wang and

— Crossman ’s solution at y = 0.999b. Note that both of these solutions

satisfy the free-surface condtion a2 = 0 at z 2h; also at this location

t zx = — 0 and hence the z force-equilibrium equation

~~a~~~~
I& 

~~~~~~~~~~~~~~~~~~~~~~~ ~,

ao
shows that _~~-! = 0. This condition is satisfied exactly by the TFQE and

appears to be satisfied approximately by the results of Ref. 45.

The TFQE solution for a vs. z in Fig. 20 shows that a satisfies

the physically—correct stress-continuity condition at the 0/90 interface
located at z = h and also varies smoothly throughout the depth including

this interface. However, the Ref. 45 solution for a vs. z is reminiscentz
of the assumed-displacement QUAD8 finite element solution shown in Fig . 12
where stress discontinuities are predicted at the 0/90 interface (from

elements 220 and 221) and, accordingly , must be suspect.
Finally , the shear stress tzy at the 0/90 interface (z = h) for the 

a

TFQE solution and that of Ref. 45 are shown in Fig . 21 as a function of
the y/b location. At the free edge , y/b = 1, the TFQE solution shows the

— 
correct result, t = 0, as it must; however , the assumed—displacement

finite-element solution of Ref. 45 appears to predict a large value of

at y/b 1. Except near the free edge, these two solutions are in

reasonable agreement.

Only these two solutions were found for this example problem; an

exact solution has not been located.

5.1.3 Tension-Loaded (±45) Coupon

This coupon specimen is shown schematically in Fig . 1. For the

present example, its dimensions are lOOh, 16h, and 4h in directions
x, y,  and z, respectively. Each layer of the symmetric 4-layer plate

(45/-45/—45/45 from bottom to top layer), has a thickness of h. It is
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desired that “uniform x-direction tractions” be applied on the end faces

x = ±30h such that the stresses in the laminate will be independent of x

as postulated by Pipes and Pagano [5] for a (÷45)~ coupon of this type .

For this type of laminate, Pipes and Pagano show that the u displacements

vary considerably through the thickness-direction z from z = -2h to z = +2h .

For analysis , advantage has been taken of symmetry about both the x

and the y axis ; hence , only the quarter-plate has been modeled. According-

ly, the dimensions of this quarter—plate model (see Fig. 22) are 50h , 8h , H

and 4h along directions x, y, and z , respectively . For convenience, this
coupon has been “tension-loaded” by imposing a uniform x-displacement u

over the entire face at x = 50h so as to make C = l.0.~ This “violates”x
the internal u-displacement conditions cited above for the Pipes/Pagano

problem; however, by St. Venant ’s Principle , one expects to find the

proper u displacement situation u(y z )  if one makes observations far

enough from the “loaded end” which is located at x = 50h. Therefore,

since stress conditions which are independent of x are sought in the
present problem, the quarter-plate has been modeled by 5 TFQE elements
along the x-direction , while in each case, each element spans the entire .
8h y-dimension. On the four x,y boundaries, the conditions imposed are:

(1) the entire face at y = 8h is traction free, (2) the synmietry displace—

ment conditions u 0 and v = 0 are imposed on the “entire face ” at x = 0

and y = 0, respectively , and (3) a prescribed displacement of uniform u
is applied to the “entire face” at x = 50h to make C

x 
= 1.0. Hence, the

solution where the stresses are independent of x was taken to be that at

the midlength station x = 25h. Finally, the material properties of each

layer are the same as those cited in Subsection 5.1.1.

The resulting TFQE solution for rxz as a function of y/b at the
-45/+45 inter face located at z — +h (and at the midlength station x — 25h)

is compared in Fig. 23 with three other solutions : (1) a finite—difference

solution by Pipes and Pagano (5] , (2) a 3—d assumed—stress finite element

solution by Rybicki (7] , and (3) an assumed-displacement solution by

Wang and Croseman (8] obtained by using constant-strain triangles. It

should be recalled that the latter two types of finite element solutions

~This loading ii equivalent to an applied stress, a — 2.9 x 10
6 
psi.
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tend to bound the correct displacement solution [41] ; the fact that the two

solutions lie essentially on either side of the present TFQE solution is

encouraging. That is, the analysis of Ref. 7 is based upon the Principle

of Stationary Complementary Energy, that of Ref. 8 is based upon the Prin-

ciple of Stationary Total Potential Energy, while the TFQE analysis is

based upon the “intermediate” Principle of Modified Complementary Energy .

However , one cannot claim that these other principles provide bounds on

the stress solution. Also, the finite—difference solution of Ref . 5 is

seen to be in reasonably good agreement with that of Ref. 8.

Another interesting aspect of the stress prediction for this example

is I at the free edge y = b as a function of depthwise location z; the

present TFQE prediction as well as those of Refs. 5 and 8 are shown in
Fig. 24. They are in reasonable agreement.

5.1.4 Thermally-Loaded (+45)~ Coupon

This specimen is similar to that discussed in Subsection 5.1.3,

except that (1) its total x—direction length is 220h and (2) only thermal

loading as represented by a uniform temperature change t~T = 1°F is

employed; this type of example has also been analyzed by Wang and Crossman

[45]. Modeling of the quarter-plate (see Fig. 22) was accomplished by

using 11 equal-size 4-layer TFQE elements along the x-dimension, while
a each TFQE element spans the entire 8h y—dimension. For this case the

boundary conditions used are (a) V = 0 at y = 0 , (b) u = 0 at x = 0 , and

(c) the faces at x = llOh , y = 8h , and z = ±H are stress free . The

principal material properties of each layer are the same as those cited

in Subsection 5.1.2.

It is desired to examine the stresses for comparison with the predic-

tions of Ref. 45 where the stresses are independent of x. Accordingly,

the TFQE stress predictions at the “midspan station” x 55h are discussed

in the following. Plotted in Fig. 25 are a , T , and I as a functionz zx xy
of y/b at x — 55h and the -45/4.45 interface (z = h) for comparison with

the Wang and Lrossman assumed-displacement finite element solution. Note

that at and near the free edge y — b , the TFQE solution differs from that
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of Wang and Crossman. Also at y — b, the stress free condition I = 0 isyx
satisfied exactly by the TFQE but is violated seriously by the Ref. 45
prediction. Recalling from the Subsection 1.1 discussion that 1~~
balances t at the free edge, the larger value predicted by Ref. 45 for

I might very well have arisen from the violation of the stress free
7- condition = 0 at y = b , and hence must be viewed skeptically.

The Ref .  45 predictions and the present TFQE predictions for various
stresses are shown as a function of z as follows:

Fig~~~ Stress At y/b

26a I 0 999 for Ref. 45zx
1.0 for TFQE

26b a 0.999 for Ref .  45x
1.0 for TFQE

It is remarked in Ref. 45 that the stress behavior at z = h near

y = b is (suggestive of) a singular point. The TFQE solution (Figs. 26a

and 26b) does not show such a pronounced gradient, possibly because of

the limited z terms in the stress assumption of the TFQE for each ply.
To alleviate this, each ply could be subdivided into many layers; however,
this was not carried out in the present study because of time and fund

limitations . Both solutions show that I = 0 at z = 2h and at thexz
symmetry plane z = 0.

5.1.5 Uniaxial-Tension-Loaded Isotropic Plate with a
Circular Hole

In classical elasticity theory , the analysis of uniaxial—tension—
loaded plates with a circular hole (see Fig. 27a) is usually based upon

the theory of generalized plane stress. However, if the ratio D/t of

hole diameter D to plate thickness t is small (less than about 10),

significant three—dimensional effects occur , and accordingly plane stress

theo ry is i nadequate . Alblas [22) has solved the three-dimensional
elasticity problem by the use of complex eigenfunctions. Hence, to
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illustrate the applicability of the present three-dimensional TFQE to
such a case, this type of problem (Fig. 27) has been analyzed and the
results will be ccetpared with those of Aiblas .

The geometry of the configuration , analyzed and the material proper-
ties of the isotropic plate are:

Plate Length = 2A = 8.0 in

Plate Width = 2B = 8.0 in

Plate Thickness = t = 0.5 in

Hole Diameter = 1.0 in

Elastic Modulus = E = 1O7 psi

Poisson’s Ratio = 0.25

Hence, for this case (D/t) = 2. For finite element modeling, advantage

was taken of symmetry about both the x and the y axis. Accordingly, only
the quarter-plate as depicted in Fig. 27b was modeled. Along x = 0 and
y = 0 the conditions imposed were u = 0 0 and v = 0 = 0, respectively.

The edges at y = B and r = R were stress free, and a uniform stress
= 1.0 psi was imposed uniformly on the entire face at x = A to simulate

the uniform a condition at x + ~~~.x
The finite element modeling used is shown schematically in Fig. 28.

Anticipating that three-dimensional effects will be significant only in

a region of radial extent of about the plate thickness t near the hole,
an initial width b of the TFQE elements surrounding the hole was taken

as b = t = 0.5 in, and the “intermediate nodes C and F of the TFQE (see

Fig. 6) were located at the distance b’ = 0.4875 in; the resulting

solution showed very rapidly decaying behavior such that no warping
appeared at nodes C and F. Thus, TFQE elements of small radial width b

were used; namely, b = 0.2 in and b’ = 0.19 in. Eight TFQE elements were

used to model the ( 3-d) circumferential region next to the hole in the
• 

, 

quarter-plate model. The remainder of the plate was modeled with the

hybrid—stress quadrilateral element, MLP 3K [26] as indicated in Fig. 28;

• in each “radial sector” there were 24 ZILP 3K elements (NER 24 -— see
Fig. 28).

83



___________ 
~~

The interlajuinar normal stress 0 at r — R and z 0 is shown as a
function of 0 in Fig. 29 as predicted by Alblas [22] and by the present
TPQE analysis; the plotted TFQE points pertain to the circumferential
center of each element. These predictions compare fav~rab1y , but the
stresses predicted by the TFQE calculation tend to be larger by up to
about 10 percent. Note also that 0~ is of significant magnitude over a
substantial 0—sector , and should be taken into account in an assessment
of the stress condition around holes .

Compared in Fig. 30 are the Alblas [223 prediction and the present
TFQE prediction of the circumferential normal stress a

~ 
at r R and z — 0

as a function of 0; these predictions show that -l at 0 = 00 and
0

0 — +3.0 at 0 — 90° . Also, a
~ 

exhibits a significant variation through
the thickness as shown in Pig. 31, for example , at r — R and 0 — 5.625°
where 08 is plotted as a function of z/H ; these results are plotted on a
highly expanded stress scale and are seen to differ from each other by
only a few percent.

At a station z — midway between the midsurface and the top surface,
the shear stress T 0 at r — R for the TFQE calculation is plotted in
Fig. 32 as a function of angular position 0. Because of symmetry , — 0
at 0 = 00 and 0 — 900 , and reaches a maximum at 0 — 45° . Corresponding
results are not available from Ref. 22.

Finally , it should be remarked that Alblas compared his solution for
(D/t) 1.0 with 3-d elasticity results obtained by Green (24] using

• series in sin(nO) and cos(nO). Those results also agreed to within a few

per cent. However, an examination of Refs. 22 and 24 does not show that
convergence was definitely achieved in either case .

5.1.6 Uniaxial-Tension—Loaded Laminated (0/90) Plate

with a Circular Hole
Schematically, Fig. 27a also applies to this problem, except that

this is a 4—layer (0/90) symmetric plate, each layer of which has a

thickness h. In terms of the geometric quantities defined in Fig. 27,

the dimensions chosen for the present example are A — B — ~ in, R = 2 in,
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and t — 211 • 4h — 0.02 in. The principal material properties of each
layer are:
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For finite element analysis, only the quarter—plate (see Fig. 27b)
was modeled . Eight TFQE elements occupied the circumferential region
adj acent to the hole. In each radial sector , the remainder of the plate

• was modeled with 14 “equal length” (HER — 14) MLP 3X lamination theory
hybrid stress quadrilateral multilayer plate elements (263 . The radial
width b of each TFQE was chosen to be 0.1 in , whereas the total plate
thickness is t — 2H — 4h — 0.02 in. This means that (b/t) — 5 was
employed for this (0/90) plate whereas (b/t) = 0.4 was chosen for the

isotropic plate. The larger b-width required in the present laminated
plate example stems from the fact that this plate exhibits severe warping
-- with which the TFQE is designed to cope.

The present TFQE predictions for ~~~ as a function of 0 at r —, R and
at the 0/90 interface which ii located at z = h are compared in Fig. 33
with finite element predictions by Levy, Armen, and Whiteside (463 . The
finite elements used in Ref. 46 are assumed displacement elements consist-
lug of alternating layers of orthotropic membranes and interlaminar shear
regions , as developed originally by Puppo and Evenson (2 3 .  From Fig. 33
it is seen that these predictions are in reasonably good agreement.
Note that this shear stress appears to peak near 0 • 75° .

Shown in Fig . 34 is a
~ 

as a function of 0 at r — R at the midplane

• 90/90 interface (z — 0) for the present TFQE prediction, a corresponding

result from Ref. 46 is not shown since a~ — 0 was assumed in formulating
the assumed displacement elements. Observe that a,~ is a maximum at
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0 - 90° but ii about an order of magnitude saalle~° than the peak value for
seen on Fig. 33. However, the interlaminar normal stress , a~, is

critical in the delamination (31 of certain ply stacking/orientation

sequences : hence , it cannot be neglected.

5.1.7 Analysis of Experimental Coupons

Bogy (6) has shown that two dissimilar isotropic materials, when
bonded together, develop singular stress distributions of the type r 0 at

the interface near the free edge , where r is the “radial distance” measured

from the intersection of the interface with the free edge. The power term

a, in his solution, depends on the ratios of the two shear modult , and of

the two Poisson ratios. It the shear modulus of the two materials is the
same, then a — 0~ i.e., no singular behavior occurs. This typ. of
analysis , however, has not yet been extended to orthotropic materials ,

thus, the existence of singular behavior at interfaces between different

orthotropic layer., does not appear to have been proved to date .

One should note that in composite materials the transverse shear

moduli, G~~ and GTZ (resin property) do not change with fiber orientation.

Thus , it ii difficult to correlate Bogy’s results with composite laminate

behavior. However, numerical solutions (1,5,81 do indicate po.sible
singularitie, at the interfaces of plies with dissimilar fiber orienta-

tions. In the analysis of the (0/90) coupon , Wang and Croswan (83 found

that a was a maximum at the 0°/90 interface near the tree edge . Also ,

Pip es and Pagano (1, 51 using finite differ ences could not obtain conver-

genc in the (0/90)~ and (+45) coupon solution e even with very fine

meshes .

An experimental investigation of the delamination behavior of layered

composites was carried out by Harris and Orringer (43. Two types of

coupons were tested: (a) ((+26)
2/903. 

and (b) (26/_26
2/26/901

s
. Both

types of specimens delaminated at the 26°/90° interface as shown , for
example , in Fi9. 35.

Accordingly, the variation of a through the thickness is believed to be
of little interest, and is not ~1ott .d here.

86



A finite element analysis of the delamination coupons (Fig. 36) was
carried out by using the TFQE. In the test, at each end of the specimen ,

0.125-inch thick glass/epoxy loading tabs were bonded , and a tensile load
was applied to each tab. Because of the stiffness of the tabs , this

loading for numerical analysis has been represented by a clamped boundary
condition at one end , and , an uniform prescribed displacement at the other .
However, any loading inconsistencies will be seen only in the stresses near

the loaded ends , and will not affect the rest of the solution. The finite
element modeling is shown in Fig. 37. The TFQE elements model the free

edge , and the interior of the laminate was modeled by multilayer lamina-
tion theory hybrid stress MLP 3X elements (261. The stress solution near

the free edge at x = 0.25” for both coupons , is given in Figs. 38 to 4]..

The interlaminar stresses for both coupons are identical, except for the
shear stress t which is sensitive to the layup sequence of the 260

plies.
It is of interest to examine the stresses at z — h near the free edge

since delamination has occurred at this interface (Fig. 35) . The shear

stress is negligible, but both a~ and Tyz are significant. The shear

stress t is a maximum at y — 0.4875” (i.e., y — 0.975b*) and z h;

is a maximum at y — 0.5” (i.e., y = b*)
F and z — 0.

Eleven (26/_262/26/90]5 
coupons delam.tnated [4] near the free edge in

the region -h < z < +h at an average axial load of 1979 Ib; this load is

equivalent to an axial strain of = 0.00388. For this “loading condi-

• tion”, the predicted interlaminar stresses are tabulated below at z — 0,

and h at each of two y stations: (1) at the free edge (y = b*) and
(2) at 0.975b*:

+Note that the plate half width is denoted here as b* ; the y—direction
width of a TFQE has been defined as b.
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(26/_26
2/26/90)s Coupon : (C — 0.00388)

Location Stresses (PSI)

y a t a
LX *Y

O 0 0 9778

h/2 435 0 9312

h 896 0 7411

0 0 0 889

O.975b~ h/2 —10.4 —2429 830

h —29.9 —5975 788

Note that the most severe a5 occurs at the free-edge midplane station

• (y,z) — (b*,0) ; however, for a > 0 at y — b* one observes the presence

of a t contribution as well as a significant level of tensile stress .
Although T5~ — 0 at the free edge, a very large value of this stress is

reached at (y , z) — (.975b~ ,h ) .

The eleven ( (+26) 2/9035 coupons delami nated [ 4 ]  at an average axial

load of 1583 lb; using lamination theory , this load is equivalent to an

axial strain of E — 0.00304. At this strain level, the interlaminarx
stresses at delamination can be computed from Figs. 38 and 39; accordingly,

these predicted stresses at critical locations are tabulated below:

[ (+26) 2/90] Coupon : (c 0.00304)

Location Stresses (PSI) 
-

y a t a
LX LY a

0 0 0 7722

h/2 —389 0 7358

h —8 12 0 5867

O 0 0 681

O.975b* h/2 1.3 —1903 635

h 4.2 —4682 602
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For this case also it is seen that the most sever, a stress occurs at

the free-edge aidplane station (y, s) (b* ,O ) .  At a short distance

y • 975b* from the free edge , a~ has decreased by more than a factor of
10 but an appreciable I is observed at & - h.

The delamination coupons have been analysed with a minimum number of

layers used in the TFQE to model the thickness, i .e.,  NL — 10. The
convergence of the solution has not been studied with more sublayers
because storage space was limited in the IBM 370/168 computer used for
numerical computation; time and fund constraints have not permitted the

develo~~ent of procedures to circumvent that current limi tatio n .
No singular behavior is observe d in the TPQE solutions for these

specimens since the stress assumption (Subsection 4.2) include s no
singularity . However, many researchers ( 1 ,3 , 81 believe in the existence
of a singularity at the interfaces of plies with dissimilar fiber orienta-
ti ons, but this is yet to be proved. However , until this is done , one

should also consider the possibility that delamination may arise from
a combination of interlaminar tension (as) and inte r laminar shear (t ) ,

rather than from inter lami nar tension alone since reaches a maximum
on the interface a — h at a small distance from the free edge .

5.2 Transient Response Analysis
Many laminated plat.e structures with one or more traction -free edges

are co~~only subjected not only to static but also to transient externally-

applied loading . Accordingly , a useful but simple transient response
example has been chosen to illustrate the applicabilit y and utility of

the TFQE element for this purpose .
Chose n for illustration is a 4—layer (0/90)~ synmetric laminated

plate (see Fig. 42) of 900h span , 200h width, and 4h total thi ckness ;
having selected h — 0.01 in. the attendant dimensio ns are: span - 9.00 in,
width — 2.00 in , and thickness — 0.04 in. The two ends at x - +4 .50 in
are ideally clamped, while the edges at y — ±1.00 in are traction-free.
Along the y — 0 plane at x • 0.50 in , a downward concentrated step

* 

function load P of 200 pounds is applied for a duration of 2 x 1O 4
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seconds ( that is, 200 microseconds; see Fig. 43b) . Because of geometric
and load symeetry about the y - 0 plan., only the half-width model was
analyzed . The principal material properties of each layer are those cited
in Subsection 5.1.1.

Since it might be instructive to compare transient response predic-
tions for the same physical laminated-plate problem for (a) finite element
modeling with the TFQE combined with laminated plate t~ P3K hybrid stress
elements vs. (b) finite element modeling with only MLP3K elements, both
types of modelings were used. Figure 43a indicates the finite element
modeling employed for case (a): 9 spanwise TFQE S of 0.08-in width are
located along the free edge, while the remainder of the half plate
consists of two rows of 9 spanwise equal—wi dth I4LP3K elements , and results
in a total of 312 unknown DOF ’s; thus, the TFQE elements permit the
accoumiodation of the very significant warping which can occur along the
free edge. The second modeling of the half plate, as depicted in Fig. 43b,
consists of 9 spanwise MLP 3X elements in each of 3 equal—width rows; these

* “stiffer” lamination-theory elements involve a total of 144 unknown DOF ’ s
but do not accomeodate the free—edge warping behavior that is taken into
account in the former modeling.

The transient w-displacement at the load-application point (x 0.5
in , y — 0, z — 0) is shown in Fig. 44 for each of these finite—element
modelings. It is seen that the model which consists of both TFQE and

MLP3K elements results in a larger predicted peak transient displacement
than that utilizing only MLP3K elements. The former behaves, as expected,
as a less stiff structure. Piso, it id seen that beyond about 1300 ~sec,
these two predictions are in rather good agreement with each other.

Perhaps of greater interest is the transient interlaminar stress T~~
located at the free edge y — 1.00 in, the midspan station x — O~ and the
a — 0 interface. These predictions are shown in Fig. 45. It is seen that
the peak positive Tzx for the TFQE/MLP3X modeling is about 12 times’ as

~Another calculation utilizing 5 equal-width rows of MLP3X elements showed
a peak positive I

~ 
about one-sixth of that for the TFQE/MTIP 3X modeling .
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large as that for the all-MLP 3X mod.ling, the former provides a much more

re*listic t 5~ prediction than the latter.

Another interesting facet of these predictions concerns the var iation
of 

~~~ 
and a through the thickness at a station (x,y) • (0 ,1.00 in) at

t — 1200 ~isec. This t vs. a information is shown in Pi9 . 46 for both
the ¶TQ~/MLP 3X and the a1l-NLP3)~ modeling , the variations through the
thickness of I are similar for these two predictions, though different
in magnitude. Finally , Fig . 47 shows the vs. a profile only for the
TFQ~/NLP 3X modeling , the peak values occur at the two interfaces at a •

Information on a is not obtained from the all P4LP3)C model, sinc, these
lamination theory elements assume a5 0. Similar through-the-thickness
profiles axe observed at othe r instants in tim. .

5.3 Computation Tim.s
The approxi mate CPU time (T

cpu
) requi red on the IBM 370/168 to

* generat, all of the properties of a single TFQ~ is

Tepu — (NL) 2 1 5  (Seconds)

where Nt is the number of layer s of the TFIQE . The abov, empirical equation

is accurate to within 10% .
The CPU times required for the example problems are tabulated below ;

No. of )j~proximate
Analysis Problem Unknown CPU Tim.

* 
q (Seconds)

Static 4—Ply Coupons 62 2

Delamination
Coupons 420 14 .4

Xsotro~’tc Plate with Hol. 738 27.8

• 
(0/90) Plate with Hole 909 40.9

Transien t TVQE and MLP3K 360 1.13/T im. St.p
Response NtP3K Only 200 0.46/Tim. Step
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SECTION 6

SUMMARY AND CONCLUSIONS

‘I ___________
6.1 St~iin lry

Laminated composites develop large interlaminar stresses at and near
traction-free edges; often these stresses are significant and can cause
ply delaminations. However , they are difficult to analyze and predict
accurately because the stresses vary very rapidly over a small region near

the free edge, whose extent is of the order of the total laminate thick-
ness

Previous solution methods have been able to solve only a very
restricted class of free—edge problems. The numerical procedures (finite
difference and finite element) are limited by computer storage ; the other
methods available are difficult to apply to more general problems which
may involve complex edge geometries and loading. Also, an investigation

of assumed displacement finite elements revealed severe violations of

interlayer stress continuity and boundary traction—free conditions.
In the present research , a hybrid stress multilayer warping element

with a traction-free edge has been developed for efficient finite element
modeling at and near free edges , and is termed the Traction Free—Edge
2uadrilateral Element (TFQE). The element is based on the Principle of

Modified Complementary Energy , in which the requirements of interelement
traction compatibility and applied boundary traction compatibility are
relaxed. The stresses are independently assumed in terms of unknown

parameters , 8, in each element and are * eliminated in terms of the boundary
displacement nodal degrees of freedom , q. This results in a compact set
of equations with only the q ’s as unknowns.

The element stresses were selected from basic mechanics considera-

tions including free—body equilibrium , traction-free conditions on the
free edge , and interlayer continuity conditions. The stresses are assumed
throughout each layer , and interlayer stress continuity and traction—free *

conditions at the free-edge are satisfied exactly. The resulting stress
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distribution was examined for consistency as required by 3-dimensional

stress functions . The stress assumption includes no singularity.
The assumed displacement field ~ llows the traction—free edge to warp

f reely , and the transverse displacement w is quadratic through-the-

thickness. However, since the interlazeinar stresses decay :apidly (-in a

boundary—layer length which is of the order of a laminate thickness) , away

f rom the free-edge the element boundary is modeled by 5 degrees of freedom

at each of its two nodal stations, consistent with lamination theory.

For dynamic analyses, a “hybrid semi-rational” mass matrix has been
developed. It is based on the dynamic equivalent of the Principle of

Modified Complementary Energy, flmc
Also for steady-state thermal analyses , an equivalent thermal loading

vector has been computed by modifying the variational principle to include

initial thermal strains . The temperature distribution is assumed to have

been prescribed in each layer of the TFQE .

The interior of the laminate , away from the free edge , has been

modeled by laminated-plate elements which are based on lamination theory .

These elements (named MLP3K) include transverse shear c~eformation and

are compatible with the TFQE . Thus , numerical results for general free-

edge problems are obtained with an efficient lamination-theory element

modeling of most of the structure, while TFQE elements provide additional

warping degrees-of-freedom at and near the free edges where the warping

effect is important.

Several static mechanically-loaded and thermally-loaded laminate

examples , for which other numerical solutions exist , have been solved by

using the TFQE. The results compare well, but a significant reduction

in the number of unknowns of the equations has been achieved in the

present TFQE solution. Also, several of the numerical procedures used

in the “other solutions” violate some of the proper traction conditions.

All of these stress conditions , however, are satisfied exactly by the

TFQE . Even though the present illustrative examples are very restricted ,

the TFQE is a 3—dimensional element and , accordingly , is applicable
to more general problems.
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To illustrate the applicability and utility of the TFQE element for

transient response analysis, a narrow laminated plate with both ends

clamped, its other two sides free , and subj ect~:d to a w-direction

concentrated step load of short duration was analyzed. Significant

interlaminar stresses were predicted by the TFQE analysis to occur at

and near the free edge . Lamination-theory analysis , however, resulted in a

serious underestimation of one of these stresses T ,~, and no information

at all f o r a .z
Finally, some numerical methods for solving static and transient

response equations have been reviewed.

6.2 Conclusions

Based upon this study of the analysis of interlaminar stresses at

and near traction-free edges of multilayer laminated plates , the follow-

ing conclusions can be stated:

(a) An efficient hybrid—stress finite element called the traction—

free-edge-~uadrilateral element (TFQE ) based upon the Principle

of Modified Complementary Energy has been developed successfully

for the analysis of stresses , strains , and deflections at and

near the traction-free edges of multilayer laminated plates

where significant warping and severe rapidly varying inter-

laminar stresses often occur. The achievement of a given

accuracy of interlaminar stress prediction with the TFQE for

representative problems requires a substantially smaller number

of final unknown generalized, displacements q in the governing

equations than by the use of representative assumed-displacement

finite elements.

(b) For the present class of problems , an exact solution upon which

to base or guide the selection of the assumed stress field

throughout each layer of the multilayer hybrid—stress element
is not available , unlike hybrid—stress crack elements (47 1

where the assumed stress field is based upon the known exact
solution around cracks . Therefore , the assumed stress field
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throughout each layer of the TFQE has been selected from basic
mechanics considerations, requirements arising from free-body

equilibrium conditions , and consistency implied by stress

function formulations. The resulting assumed-stress distribu-
tion selected throughout each layer of the TFQE appears to
represent a reasonable spatial distribution while keeping the
number of assumed—stress parameters ~ f rom being unduly large .

• However , more comprehensive distributions for the assumed

stresses could be implemented readily.

Cc) In hybrid stress elements when the interlaminar normal stress,

~ 0 , the assumption that the transverse displacement w is

a constant through the laminate thickness at any point in the

boundary displacement field is inconsistent. This assumption

is incorrect because the transverse strain , £ , is zero at

those locations; also, a
~ 
is sensitive to this constraint. 

*

(d) Interlayer stress continuity and boundary traction conditions
can be satisfied exactly in the hybrid stress model. These

conditions are enforced most efficiently when implemented

analytically as in the present TFQE procedure rather than by
Lagrange multipliers as reported in Ref. 20.

(e) Whereas , the number of stress parameters ~ in each TFQE element

is (52NL-l8) , the “final” nodal q degrees of freedom are
( 8NL+30) , where , Nt is the number of layers in the element.

The number of assumed—stress parameters 8 increases more rapidly

than does the number of q ’ s as NL is increased. Further , no

adverse ( numerical) effect  was seen in the TFQE solution of the

tension-loaded (0/90) coupon when NL was increased from 4 to

8; on the contrary both solutions appear to be converged.



( f )  In the development of hybrid stress elements , care must be
exercised to eliminate kinematic modes since such modes make
the stiffness matrix singular. The present study has demon-
strated a useful procedure for eliminating these modes . Demon-
strated here also is the fact that the necessary condition cited
in Ref. 42 for the avoidance of kinematic modes is not a
sufficient condition. That is, the Ref. 42 requirement is
m > n-i , where “m” is the total number of independent 8’ s , “ii ”

is the total number of nodal displacements q, and “L ” is the
number of rigid-body modes of the element. In a preliminary
version of the present formulation for the TFQE , however ,
m — (52NL—l8) , n (8NL+30), and 2. — 6; hence, m > n—i for all
ML, but two kinematic modes were present.

(g) Assumed displacement elements tend to violate : (1) interlayer
stress continuity and (2) traction-free conditions at free
edges , this well-known general behavior has been demonstrated
here for stress—free—edge multilayer plate examples. The
deficiencies of such 2—d or 3-d elements when applied to the

L 

analysis of inultilayer plates can be alleviated to some extent
by the use of a great many elements (and the attendant large
number of unknowns in the final governing equations) .

(h) The uniaxial tests of 10—layer coupons of layup sequence
[26/_26 2/26/9015 and [ (±26) 2/90) 5 by Harris and Orringer (4)
show that delamination occurs at the 260/900 interface. The
TFQE analysis of these coupons predicts that the interlaminar
shear stress ‘r is a maximum at this interface near the freezy

• edge, also, significant ci stresses are present here . This leads
to the possibility of delamination arising from a combination of
interlamj xiar tension ( a )  and interlaminar shear (t

ry
)~

(i)  In transient response problems , significant interlaminar stresses
can occur at the free edges of laminated plates , and can be
predicted plausibly with the use of the present TFQE elements .
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These stresses cannot be predicted efficiently and accurately

or even at all for certain of these stresses by lamination

theory (and the associated finite element or finite difference

analyses).

6.3 Suggestions for Futur e Research

The possible existence of a singularity at the interfaces of

dissimilar plies near free edges of inultilayer laminates needs further

investigation. However, this singularity could be created “artificially”

by the mathematical model, because mathematical ply properties change

• abruptly across interfaces. In real laminates, the material is two phase

(resin and fiber) , and ply properties change gradually ; however, this

could possibly lead to stress concentrations rather than singularities

• at the interface near free edges. When accurate information is obtained

at ply interfaces near free edges, these stress features can be added to

the stress assumption of the TFQE to improve its capability.

The continuity of strains c and y (as well as the presently imple-

mented c,~ continuity) at layer interfaces has not been enforced in the

• TFQE element. This is dif f icul t  in the present formulation because , C

and are complex linear functions of the stresses , 
~~~ 

as,. a~. and
Txy~ 

A met ’rnd of satisfying strain continuity for these components needs

to be developed.

The stress assumption used in the T?QE is for the most part linear
in x and quartic in y. The influence of additional terms in either or

both x and y on the solutions should be studied.

Most of the illustrative examples (except the tension-loaded (0/90)~
coupon) have been studied with a minimum number of layers modeling the

thickness. More detailed sublayered models should be analyzed to check
for convergence and for improvement of the solutions.

The TFQE finite element should be tested on problems involving more

complex geometries and loading . For such cases appropriate experim.~*ntal

and/or theoretical data should be obtained for testing the adequacy of

the TFQE predictions .
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FIG. 2 QUALITATIVE STRESS DISTRIBUTION FOR THE TENSION-LOADE D 4-PLY
(0/90), COUPON
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APPENDI X

TFQE AND MLP3K PROGRAMMING DETAILS AND APPLICATIONS

The intent of this appendix is to describe how each of the finite-

element property matrices is evaluated for the traction-free edge quadri—

lateral element TFQE which is a three—dimensional multilayer plate element.

In typical structural analysis applications, the TFQE is used only along

traction—free edges where one seeks detailed information on warping and

severe interlaininar stresses; the remainder of the structure is modeled

with lamination—theory finite elements such as MLP3K of Refs. 26 and 35.

The evaluation of some of the finite element property matrices for the

MLP3X is described in Ref. 34, and that description is not repeated here;

for applications discussed in this report, however, additional properties
for the MLP3K element are needed, and are discussed here.

The data necessary to define the geometric, mechanical, thermal,

and/or mass characteristics of the multilayer conf iguration to be repre-

sented by the TFQE and/or by the MLP 3K is supplied by the user via an

argtsnent list which is described in detail. As presently constructed ,

the programs and subprograms do not accommodate input cards; however, if

desired the user can readi ly convert to this type of user mode .

Several illustrative examples involving the use of TFQE and/or MLP3K

elements for static mechanical and/or thermal loading conditions are

included . Also , an illustrative transient structural response example

is included. In a similar manner the user can employ the basic finite

element property building blocks given here and in Ref. 34 to carry out

a structural analysis for his own special application. For such applica-

tions , it is assumed that the user has a finite element assembly-and-

solution package . In the illustrations shown here , the FEABL 5 computer

program (34 1 has been employed in this role.

Finally , all programming and calculations in the present study have
been carried out in FORTRAN for the IBM 370/168 system at MIT. Although

an attempt has been made to write the programs in a facility—independent

fa8hion , the user should check to see what changes , if any , may be needed

to enable these programs to be executed at his particular computer facility.
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For structural analysis the four element quantities required are
(a) Mass Matrix, in (Eq . 3.36)

(b) Stiffness Matrix , k (Eq . 3. 14)

Cc) Thermal Loads Vector, 
~T 

(Eq . 3.15)

(d) Mechanical Loads Vector, 
~M 

(Eq. 3.11)

In addition, the stresses (Eq. 3.2) need to be computed from the displace-

ment solution by using Eq. 3.19.

For the TFQE , rn , Ic , and 
~T are prograzmned as separate modules (con-

sisting of a combination of selected subroutines) which can be accessed

individually when needed. However, some interaction does occur between

modules , because information developed in one module is required in

another. The mechanical loads vector, is computed analytically . The

development and user information for obtaining these properties are dis-

cussed in Subsection A.l. The stress computation procedure is also

— included.

For MLP3I(, the user information for an and k is given in Ref. 34

(p. 9-15) . In the present effort , the stiffness matrix module has been

modified to compute 
~T also. The modified version for the k for MLP3K

is discussed in Subsection A.2  The mechanical loads vector , 
~ M ’ is

computed analytically similar to the procedure used for the TFQE . The

MLP3K stress computation procedure is included in Subsection A . 2 .

In Subsection A .3 , the applications of TFQE and MLP3K to the example

problems described in Section 5 are discussed.

A.l TFQE Programming Details

The TFQE properties are computed with the aid of the following

alphabetically—listed subroutines:

ASG - Used by FHIGI for computing G (Eq. 3.7) of each layer

ASGT - Used by THERM for computing 
~~ 

(Eq . 3.9) of each layer

ASH - Used by FHIGI for computing H (Eq. 3.6) of each layer

ASHT - Used by THERM for computing 
~~ 

(Eq. 3.5) of each layer
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DXRD - Reads

(a) ML, b k and rn if 15W — 1 using FORTRAN unit n~~~er

8 from disk dataset.

(b) Z , S and H 1G if ISW — 2 using FORTRAN unit number
9 from disk dat aset.

See subroutine DXW for definition of quantities .

DXRH - Reads

(a) Z , S and H G if ISW — 1 using FORTRAN unit number

9 from disk dataa.t.

(b) NH, LNZ, L.NR and lAD if ISW — 3 using FORTRAN unit
number 10 from disk dataset

Cc) H if ISW — 2 using FORTRAN unit number 10 from

disk dataset.

See subroutine DXW for definition of quantities.

DKRS - Similar to DKRD except the mass matrix rn is not read .

- Writes

(a) ML (integer value of the number of layers) ; b (element

width in single precision), k (element stiffness matrix

in double precision); rn (element mass matrix in double

precision) onto disk dataset using FORTRAN unit
number 20.

(b) Z (layer surface and/or interface coordinates in single
precision) ; S (material properties of each layer in

single precision) ; H 1G (single precision array used

to compute the betas , ~q. 3.l2b) onto disk dataset
- 

- 
using FORTRAN unit number 21.

Cc) NH (integer value of H—matrix length) g I$Z, LNR, lAD

(integer arrays for the H-matrix since it is banded) ;

H (factored H-matrix in double precision) onto disk
dat aset using FORT RAN unit number 22.
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ELM12 - Used by TFQEM to compute all xy-plane area integrals for

the mass matrix in (Eq. 3.36).

ELYM - Used by TFQEM to compute the mass matrix of each layer .

FHIGI - Computes G (Eq. 3.7) and H (Eq . 3.6) of each layer .

HGCON - Used by TFQEK to eliminate dependent B’ s and assemble C
(Eq. 3.7) and H (Eq . 3.6) for entire element. Used

similarly by TFQET to eliminate dependent B’ s and assemble

~~~~ 
(Eq . 3.3 and 3.9) and !!~~ 

(Eq. 3.2 and 3.8) for entire

element. Also used by STRESS to compute all 94 B’s of each

layer from the independent $‘s.

HIGI( - Used by TFQEK to factor H (Eq. 3.6) and compute k (Eq. 3.14)

and H 1G (Eq. 3.12b) . Used by TFQET to compute

(Eq. 3.12b) using the factored form of H (Eq. 4.73).

NUMINT - Computes all xy-plane area integrals and boundary integrals

for G (Eq. 3.7) and H (Eq . 3.6) .

PROP - Computes the compliance coefficients (Eq. 4 28) of each

layer from ply orientation angles and material properties .

ROTATE - Transforms the element stiffness matrix and load vectors

from element axes to global axes (Eq. 3.17). Also trans-

forms the element displacement vector from global axes to

element axes (Eq. 3.16). All transformations are in the

xy-p lane.

STRESS - Evaluates the stresses (Eq. 3.2) in each layer at coordi-

nates specified by user.

TERMS - Computes and 
~~ 

(Eq. 3.2) .

TPQEK - Subroutine called by user to compute the element stiffness

matrix k (Eq. 3.14) and H 1G (Eq 3.12b).

TFQEM — Subroutine called by user to compute the element mass

ma trix in (Eq . 3.36) .
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TFQET - Subroutine called by user to compute the element thermal

loads vector 
~T (Eq . 3.15) .

THERM - Used by TFQET to compute H~ (Eq . 3.8) and 
~~ 

(Eq 3.9) .

TMPSTR - Compute thermal quantities ~~~~, ~~ . 0 and (Eqs . 4.27

and 4.30) of each layer from ply geometrical, thermal,

and material properties.

Each module of the TFQE is discussed individually in the following subsec-

tions .

A.l.1 The TFQE Mass Matrix

The program structure of the mass matrix is shown in Fig. Al. Sub-

routine TFQEM i. called by the user, but ELM12 and ELYN are called by

TFQEM to perform the specific computations shown in Fig. Al. The numerical

computations are done in double precision and all real arguments are double
precision .

The user call statemen t with the arguments is

CALL TFQEZI (X,Y , Z ,RHO ,EM , NL)

where

X (4) ,Y (4 )  - Nodal coordinates of the four (4) corners in the

order A , B, D, E (Fig. 6). Note that sides AN and

CE must be parallel.

z( NL+l) - Interface and/or surface coordinates of each layer

with respect to the laminate axis z (not z ) .  Note

that z (l) — -H (see Fig. 6).

RHO(NL) - Layer mass per unit volume.

NL - Number of Layers

are inputs supplied by user. The quantity

E14 (*) - TFQE mass matrix in LIV form (Eq. 3.36) .

*
The array EM is used internally by TFQEM for other computations. Hence ,
add 750 words to the dimension given in Table Al.
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is output by TFQEM. Since the mass matrix is symmetric, only the lower

triangle (termed LW form) is computed and supplied.

A.l .2  The TFQE Stiffness Matrix

The program structure of the stiffness matrix is shown in Fig. A2.

Subroutine TFQEK is called by the user, but the others are called by TFQEK

to perform the specific computations shown in Fig. A2. The numerical

computations are done in double precision and all real arguments are double

precision.

The user call statement with the arguments is
CALL TFQEX(X ,Y ,Z ,S,HIG ,ELK,NL,HMAT ,LNZ ,LNR,IAD)

where
- x ,Y ,z - Defined in Subsection A.l.1.

s(13,NL). - Elastic compliance coefficients (Eq. 4.28) of each

layer. They are specified in the following order:
Sil l S2l. S

2 2l  
S31, 

S
32
, S33

, S
61
, S62, S63, S66

,

S
4
, S

5
, and S

55
. In Subsection A.l.6, subroutine

PROP for computing the compliance properties is

discussed.

ML - Number of layers .

are inputs supplied by user. The quantities

H I G (*)  - Matrix H 1
G (Eq. 3.l2b).

ELK(*) - TFQE stiffness matrix in LW form (Eq. 3.14).

H M AT(* )  - trix H in factored form (Eq. 4.73).

LN Z(N Q ) 1 — Pointers for H since the matrix is banded . Need not

LNR ( NQ) ~ be defined by user. Note NQ = 8NL+30 .

IAD ( NQ) J
*Refer to Table Al for dimensions. The array ELK is used internally by

TFQEK for other computations. Hence , the minimum dimension of ELK for
-TFQEK should be 8040 words.
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are output by TFQEK. Since the stiffness matrix is sy~~etric. only the
lower triangle (termed LW form) is computed and supplied in the first
NQ(NQ+l) /2 entries of ELK, where NQ — BNL+30. Although ELK is dimensioned
8040, only part of it contains the stiffness matrix. 

-

A • 1. • 3 The TFQE Thermal Loads Vector
The program structure of the thermal loads vector is shown in Fig. A3.

Subroutine TFQET is called by the user, but the others are called by TFQET
to perform the specific computations shown in Fig. A3. Subroutine DKRH

reads information from disk datasets on FORTRAN unit numbers+ 9 and 10.

Setting up the required information of disk datasets will be discussed in

Subsection A • 3. All arguments are double precision except a and S.
The user call statement with the arguments is

CALL TFQET ( STR, NL,NBETA,ELQ,S,X ,Y ,Z ,TI I SGO ,HT ,LNZ ,LNR I ].AD)

where

STR( *) - Temporary storage in double precision.

ML - Number of layers.

NEETA - Number of independent betas, 52NL-l8 (Eq. 4.60)

S,X ,Y ,Z - Defined in Subsection A. 1.2.

TI(6,NL) - Temperature constants (Eq . 4.26) in each layer

(~T~ 1 i — 1, 6 ) .

SGO ( 4 ,NL) - Thermal quantities ~~
°, & , ~ , and (Eqs. 4.27

and 4.30) . In Subsection A.1.6, subroutine TMPSTR

that computes SGO is discussed.

LNZ,LNR,IAD - Defined in Subsection A.l .2

are inputs supplied by user. The quantities

FORTRAN unit number ( sometimes referred to as a hardware device code)
is used to control input/output operations. The unit numbers 5 and 6
are comeonly assigned to the card reader and line printer , respectively,
on IBM and CDC systems.

*Same dimensions as HMAT in Table Al.
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ELQ(NQ) - Thermal loads vector (Eq . 3.15) where NQ — 8NL+30.

HT ( NBETA) - 
1 

~~~~ 
(Eq . 3.l2b) . This is required by STRESS for

computing stresses.

are output by TFQET .

A.l .4 The TFQE Mechanical Loads Vector

The mechanical loads vector can be computed from Eq. 3.11. The

nodal displacement interpolation function L is discussed in Subsection

4.5.2. Thus, from the prescribed applied traction and known L, can

be computed analytically.

A.l.5 Stress Computation in the TFQE

The program structure of the stress computation and print procedure

is shown in Fig. A4. Subroutine STRESS is called by the user, but HCCON

and TERMS are called by STRESS to perform the specific computations shown

in Fig. A4. Only the arguments HT,ELQ,TPI ,SGO and HI are double precision.

The user call statement with the arguments is

CALL STRESS(LNUM,X, Y,ZZ,NSP,NL,S,HT,BI, HIG,ELQ,NZL,

NZC,TPI,SG0,ITMP,ISYM)

where

LNUM - User ’s global element number.

X (N S P )  - xy-coordinates (w.r.t. element axes, Fig. 6) where

Y(NSP+l) stress output is desired. Also Y (NSP+l) = b (Fig . 6) .

At each of the NSP locations, the stresses and

strains are computed in each layer from z = -H to

z = H (Fig. 6).

zz(NL+1) - Interface and/or surface coordinates of each layer

w,r.t. laminate axis z. Note that ZZ(l) — —H

(Fig. 6). ZZ is also defined as Z in Subsection

A.l.l.

NS? - Number of locations in the xy-plane where stresses

and strains are to be computed.
161
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ML - Number of layers.

S(l3 ,NL) — Defined in Subsection A.1.2

HT(NBETA) - Defined in Subsection A.l.3. If there are no
thermal effects, HT is not initialized.

HIG(*) — Defined in Subsection A.l.2.

ELQ(NQ) - Element nodal displacements w r.t. element axes

(Eq. 3.16). Note NQ = 8NL+30.

NZL - Number of z locations in each layer where stress
and strain output is desired; must have NZL > 2.

For example if NZL = 5, the stresses and strains

are computed and printed at the following 5

locations in each layer: 2 layer interfaces and
3 intermediate equally—spaced points. If NZL 3,

the stresses and strains are computed and printed
at the layer interfaces and the layer m.tdplane.

NZC - Portion of x,y plane NSP locations where stress
and strain output is desired (at NZL locations) .
For location X(NZC+l) , Y(NzC+].) , NZL is set equal
to 3; hence, at such locations stress and strain

output are given at only 3 z—locations in each
layer. Note that NZC < NSP . These NZC locations
are at X(l) ,, Y ( l) . . .X(iqZc) , Y(NZC ) . This provides
flexibility to the user if detailed stress output
is desired near the free edge .

TPI(6,NL) — Same as TI defined in Subsection A.l.3.

SGO(4,NL) — Defined in Subsection A.l.3 .

ITMP Pointer: ITMP — 1 when thermal effects occur;

IT~~ = 0 for no thermal effects.
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— ISYM - If the solution is symmetric about the element

midplane z — 0 , set ISYM — 1 to obtain stress and

strain output only between -H < z < 0.

are inputs supplied by the user. The quantity

BI(94*NL) - Total betas of the TFQE (Eq. 4.55)

is output by STRESS.

A.l.6 Subroutines PROP, TMPSTR, and ROTATE

The above subroutines perform useful functions, essential to the
TFQE. They will be discussed individually.

Subroutine PROP computes the compliance coefficients (Eq. 4.28) of - 
-

each layer f rom the material properties and orientation angles of the
plies. The coefficients are output in matrix S defined in Subsection

A.l.2; these coefficients now are defined relative to the x,y,z axes of
the whole laminate. All real arguments are double precision. The user

call statement with arguments is

CALL PROP(S ,XEL ,ANG ,NL , IPG)

where

XEL(12,NL) — Basic properties of each ply. They are specified

in the following order: E11, E22, E33
, ~~~~~~~~ v23

V31, G12 , G23 , G
31 (material properties) and

~2’ 
ct
3 
(thermal properties). Subscripts 1, 2, and

3 refer to the material axes ~~~~~ of the ply
(defined in Eq. 4.27).

ANG(NL) - Angle (positive ) measured counterclockwise from x

axis of the TFQE (Fig. 6) to the principal material

1-axis of each layer. ANG (NL) is specified in

degrees.

NL - Number of layers
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IPG - Pointer; if material and thermal prop erties of all
layers are the same , set IPG = 1. and specify only

the first layer properties in XEL. Also , the
required dimension is XEL( 12 ,1).

are inputs supplied by user. The quantity S(13 ,NL) —- defined in

Subsection A.l .2 is output by PROP .

Subroutine TMPSTR computes the thermal quantities £~~, o
O
, o0, and

(Eqs. 4.27 and 4.30) of each layer from ply geometrical, thermal,
and material properties. The coefficients are output in matrix SGO,
defined in Subsection A.1.3. Also, computed are C ,  and y

0
; these are

used by MLP 3K (discussed in Subsection A. 2) to compute the thermal loads.
The thermal strains are output in EPSO. All real arguments are double

precision. The user call statement with arguments is

CALL TMPSTR(XEL,ANG,SGO,EPSO,NL, IPG)

where the inputs XEL, ANG, ML and IPG are defined in subr.utine PROP. The

quantities

SGO(4,NL) - Defined in Subsection A.l .3

EPSO(3,NL) - Equivalent thermal strains (Eq . 4.27a) . They are

defined in order as tO ~~~ and ~ox y xy

are output by TMPSTR.

Subroutine ROTATE transforms the element stiffness matrix and loads

vector from element coordinates to global coordinates (Eq. 3.17). It

also transforms the element global displacement vector to element coordi-
nates (Eq. 3.16) . All transformations are in the xy-plane. All real

arguments are double precision. The user call statement with arguments is

CALL ROTATE (ELKT, ML ,ELKS, ELQ, INF , ANGLE ,IK)

where the inputs are

ELKT(*) - Should contain the element stiffness matrix if 1K — 1.

It is undefined if IX 2 and dimensioned ELKT(l)
if IK— 0.

*Refer to Table Al for dimensions .
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NL — Number of layers.

ELKS(*) - Should contain the element stiffness matrix if
1K — 2. It is undef ined and dimensioned ELKS(l)
if 1K ~ 2. -

ELQ(NQ) - Input the thermal loads vector if IX ~ 0. For
1K — 0, should contain the element global displace-

ment vector. Note : NQ 8NL+30.

INF(4*NL+8) - Internal work array

ANGLE - Angle (positive measured counter clockwise) from

global x axis to the x axis of the TFQE (Fig. 6) .

ANGLE is specified in degrees.

IX - Pointer: set 1K — 0 for transforming the element

global displacement vector to element axes (Eq. 3.16);

set 1K — 1 if EXLT contains the element stiffness
matrix ; set 1K — 2 if ELKS contains the element

stiffness matrix. This procedure is provided if

one needs to compute k global for various rotation

angles from a master copy of k element. By setting

IX — 2 , the k element stored in ELKS is never

destroyed.

The outputs by subroutine ROTATE are

IX — 0

ELQ(NQ) - Contains the element nodal displacement field w.r.t.

element axes.

IX — 1 o r 2

ELXT ( ) — Contains the element stiffness matrix in global
coordinates.

ELQ(N Q) - Contains the thermal loads vector in global

coordinates.

.

~~f.r ~~ Table Al for dimensions .
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A.2 MLP3K Programming Details

The element nomenclature for lamination-theory element MLP3X is fully
described in Ref. 34. In this subsection only the essential modifications

to MLP 3K will be discussed.

A.2 .l  Subroutine MLP 3X

All of the previous arguments given in Ref. 34 for MLP3K remain in

the same order , but a few more have been added . These additional arguments

are required to compute the thermal loads vector,
The modified user call statement with arguments is

CALL MLP 3K(EK ,NLAY ,XEL ,Z ALPHA,XX ,YY ,BETA ,CMC,MAXL ,

NSIDE.OP,KW,ELQI EPSO,TI,NPT,HT)

where
EK( 210) — *

NLAY - Actual number of layers for current problem

XEL ( MAXL ,6) - Material properties, such that XEL(K,6) describes - 

-

‘

the Xth layer in order z

E11, E22 , “12’ V231 G12 , G23 if ØP — 0 
- 

-

EL~ 
ET V

LT~ 
V23 P GLT, G23 if ØP - 1

z(MAXL+l ) - Interface coordinates , such that Z ( J )  — location of

3th interface , including bottom and top surfaces.

ALPHA (MAXL) - ¼ngle (positive counterclockwise) from global X— axis

to the principal material 1-axis in degrees . ALPHA(K)

— angle for Kth layer. See pg. 9-15 of Ref. 34.

XX(NSIDE) - X, Y coordinates of nodes
YY(NSIDE)

BETA(352) — *

cP4c (~~~xJ~,3 , 3) — *

*Element MLP 3X returns EK — element st iffness matrix in LW form . Vector
BETA and matrix cMc are returned for stress analysis in MLP3S . These
quantities must be saved in temporary storage for later use if stress
analysis is to be executed.
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MAXL - Maximum number of layers permitted using given

dimensions

NSIDE - Number of element sides (—3 for triangle or 4 for

quadrilateral)

0? - Integer option parameter; set ØP — 0(1) if material

properties are in tensor (handbook) form.

- FO~ r~AN unit number for on-line printer at user’s

facility.

ELQ(20) - Thermal loads vector

EPSO(3 ,NLAY ) - Defined in Subsection A.l.6

TI(6 ,NLAY ) - Defined in Subsection A. l .3

NPT - Set NPT — 1 if the thermal loads vector is desired.

HT( 16) - Vector of length 16 created internally for later use

in MLP3S.

A . 2 .2  Subroutine MLP3S
All of the previous arguments given in Ref. 34 for MLP3S remain in

the same order , but a few more have been added. These additional argu-
ments are required to include the thermal effects in the stresses .

The modified user call statement with arguments is

CALL MLP3S (LNUM,EQ, BETA ,CMC,~~~XL ,Z ,NLAY ,NSI~~~,NSP
XXP,YYP,XX,YY,XL ,ALp~~ , ISDIR,KW,EPSO,TI ,NPT,HT)

where

LNUM - User’s element number

EQ(20) - Element displacement vector

BETA(352) - As defined by MLP3X

CMC (MAXL ,3,3) - As defined by MLP3K

MAXL - Maximum number of layers permitted using given
dimensions

z(MAXL+l) - Interface coordinates
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NLAY - Actual number of layers

NSIDE - 3 o r 4

NSP - Number of points over the XY surface of the element

at which stresses are to be calc~ilated (< 10) . If

NSP — 0, stresses will be calculated at the element

geometric centroid.

XXP(l0) — x , y coordinates of stress—calculation points
YYP(lO) J (need not be defined if NSP — 0).

XX(NSIDE) - X , Y coordinates of nodes

YY(NSIDE ) J
XEL(MAXL ,6) - Material properties

ALPHA ( MAXL) - Layer of orientation angles

ISDIR — 0 for stress—strain results in global (XYZ)

coordinates or 1 for results in material—axis
(123) coordinates

Xw - FORTRAN unit number for on-line printer at user’s

facility

EPSO(3,NLAY) - Defined in Subsection A.l.6

TI(6,NLAY) - Defined in Subsection A.1.3

NPT - Set NPT = 1 if temperature changes occur .

HT(l6) — Vector of length 16 used intez nally. This was

created in MLP3K.

A.3 Illustrative Applications of TFQE and MLP3K

The applications of TFQE and ML? 3K to the example problems described

in Section 5 are discussed in this subsection.

A.3.l TFQE Generation and Storage

The TFQE mass, stiffness, and H 1
G (used to compute stresses) matrices

are computed first in any problem and are stored in disk datasets. Then

during subsequent solutions , these quantities are read in from the data-
sets and may be reused whenever needed. This procedure saves computing

time and storage.
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The flow chart for the computer program is shown in Fig. A5, and the

MAIN program is listed at the end of this subsection . The numerical compu-

tation is done in double precision . As an illustrative example , the

dimensions of the various arrays have been set up for a four-layer TFQE .

The ply properties in each layer are the same; hence, IPG — 1 and the

array )~ L is dimensioned only for the first layer (see Subsection A.l.6 
—

for details). The thermal properties are not specified since they are

required only by PMPSTR (Subsection A.1.6). The various inputs are

clearly marked by comment cards. The integer value KWP is the FORTRAN

unit number for the on-line printer at the user’s facility. This is

accessed by the TFQE (see GNSTO200) through the COMMON block PRINT.

Subroutine DKW writes the TFQE properties into disk datasets in the

following order:

(a) NL (integer value of the number of layers); WIDTH (element

width in single precision); ELK (element stiffness matrix in

double precision), and EM (element mass matrix in double

precision) using FORTRAN unit number 20.

(b) SZ (layer surface and/or interface coordinates in single

precision); SS (material properties of each layer in single

precision), and SHIG (single precision array used to compute

betas, Eq. 3. l2b) using FORTRAN unit number 21.

(c) NH (integer value for length of the H-matrix); LNZ, LNR, lAD

(integer arrays for the H—matrix since it is banded), and

HNAP (factored H-matrix in double precision) using FORTRAN

unit number 22.

It is emphasized that the TFQE is not restricted to a 4-layer

laminate and the given geometry. The program listing that follows is

an example case.
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A.3 .2 A Uniaxial-Tension-Loaded Laminated Plate with a Circular Hole

This program can be used to solve both of the examples discussed in
Subsections 5.1.5 and 5.1.6. The flow chart for the compute r program is
shown in Fig. A6 , and the MPiN program is listed at the end of this
subsection. Most of the numerical computation has been done in double
precision .

This example is the tension loaded isotropic plate (Albias problem)
discussed in Subsection 5.1.5. The dimensions of the various arrays
have been set up for a 4-layer TFQE and a 1-layer MLP 3K.

The program can be used to analyze any axial-tension-loaded laminated
plate with a hole. The only restriction is that the problem should be

symmetric about the x and y axes (see Fig. 27) and the plate is square ;
i.e., A = B .
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